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Summary (English)

This thesis consists of 4 independent pieces of work and each of these have a ded-
icated chapter in the manuscript. The first chapter investigates contemporary
methodologies for estimating predictive variance networks in regression neural
networks. The second chapter goes beyond regression task, and studies Gaus-
sian processes to present a Bayesian non-parametric way of inferring stochastic
differential equations for both regression and continuous-time dynamical mod-
elling. The third chapter unifies theory of geometry and Gaussian processes to
present a latent variable model that respects both the distances and the topol-
ogy of unlabelled data. The fourth, and last, chapter shortly reviews current
methodologies for bivariate causal invariance and propose an algorithm using
a non-parametric estimator robust towards a causal invariant: changes in the
marginal distributions.
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Summary (Danish)

Denne afhandling består af 4 uafhængige forskningsprojekter og hvert projekt
har et tilhørende kapitel i afhandlingen. Det første kapitel omhandler metoder
til at kvantificere varians i neurale netværk til regression. Kapitel 2 betragter
mere end regressionsopgaver og studerer Gaussiske processer for at præsentere
en Bayesiansk ikke-parametrisk måde at deducere i stokastiske differentiallignin-
ger. Disse kan bruges til både regression og dynamisk modellering i kontinuert
tid. Det tredje kapitel benytter teori fra geometri og Gaussiske processer til at
præsentere en latent variabel model som respekterer både afstande og topologi
af ikke-annoteret data. Fjerde, og sidste, kapitel omhandler bivariat kausal infe-
rens og beskriver en algoritme som bruger ikke-parametriske estimatorer til at
undersøge en kausal invariant: ændringer i marginale fordelinger.
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Chapter 0

Introduction

A major challenge in completing this thesis was finding a suiting title. The work,
which it consists of, is varying among some fields that are not easily combined. It
was however an aim for me to find a red thread and I hope the reader will find
reading it easy. To illustrate this thesis will deal both with variance prediction in
neural networks, Bayesian methods, Gaussian processes, and causal inference. it is
perhaps not impossible to connect these, and I hope I have found a good thread, but
giving one title to fit all was a major challenge. The title: ’Stochastic Representation
using Gaussian processes and Geometry’ is my best attempt in saying what will
appear over the next approximately 80 pages. Representations are a forgiving word
as it can represent many things at once. In Chapter 1 it will refer to representing
variance in the simpler neural network models. Chapters 2 and 3 will revolve around
Gaussian processes and latent representations, while Chapter 4 we will represent
causal connections and how we can infer them.

The geometry role, insinuated by the title, is not immediately clear why it deserves a
place there. Nevertheless, geometry has been a fundamental driver in many of the ideas
on which this thesis is based. In Chapter 3, I argue why variance and uncertainty,
in general, are connected when the geometry is viewed from a stochastic viewpoint
rather than the usual deterministic perspective.

It was a goal for me to write this thesis such that it should be readable without
reference to a load of prior works and without giving the reader a headache. To this
aim, I will occasionally slack on minor technical details to preserve the overall profile
throughout. So who should read this thesis? Readers will likely have a better time if
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they are interested in probabilistic modelling, especially in the domains of regression
and generative modelling. Most of the problems this thesis navigates about come from
the intersection of statistics and machine learning with a pinch of differential geometry.

Chapter 1 is on uncertainty quantification in general, only the main focus is on variance
estimation with neural networks. Initially, it introduces some elements of uncertainty
and introduces the Bayesian language, which is a key actor while talking uncertainty.
Nevertheless, it is seldom the case in large neural network models that the Bayesian
regime is practical, and some of the best contemporary methodologies are simply
Bayesian-inspired. The method presented at the end of the chapter is loosely Bayesian-
inspired but has a focus on the optimisation process, which is claimed to behave
differently for variance networks than for prediction networks.

Chapter 2 is about stochastic processes. It introduces, in particular, Gaussian
processes from a constructive viewpoint and builds upon this to introduce both
Wishart processes and stochastic differential equations. The latter has recently won
much acclaim in the machine learning literature as a building block which unites
neural networks with classical theory of differential equations. The contribution we
propose here, unifies the theory of common dynamical models, such as
auto-regressive models and Gaussian process, with the continuous-time model of a
stochastic differential equation.

Chapter 3 is the most geometrically founded chapter of this thesis. The aim of it is
to present a manifold learning algorithm based on Gaussian processes and
Riemannian geometry. It additionally touches on topological considerations, which
subsume the usual geometric features. A thorough introduction to understanding
Riemannian geometry and manifold learning, in general, is provided. The presented
method can likewise be seen as a Gaussian process Latent Variable Model, where the
data is not given in an ambient coordinate system, but as pairwise distance.

Chapter 4 is, in my own opinion, the odd one out of this thesis. It deals with causal
inference, in particular in the bivariate case. However, the connection to the rest of the
thesis is present, as one of the main goals of the introduced algorithm is to formulate
a language of uncertainty within causal inference based on causal invariances. To be
more distinct on this, it is impossible to perform causal inference in the bivariate case,
so we try and evaluate how delicate the (naive) estimators in this field are by perturbing
them with a causal invariant — namely bijections of the marginal distributions.

I hope the reader will find the whole, or at least parts, of this thesis useful; if you are
interested in similar topics, please do not hesitate to contact me.



Chapter 1

Uncertainty Quantification

Uncertainty Quantification (UQ) aims to inform us, in a quantitative way, of how
much we do not know. However, there is also a qualitative element to it in answering
question such as: why do we not know? and how can we know more? The latter
question here is the driving force in Active Learning [Settles, 2009], where the target
is to collect more data in order to expand the knowledge we already possess.

In this chapter, we describe some of the sources of uncertainty, and to which extent
it is possible to differentiate them. We also look at Bayesian and approximate
Bayesian inference, which are frameworks to describe uncertainty in the language of
probabilities. Lastly, we go over some of the prominent methods for UQ in neural
networks and present the contributions that is based on the paper Reliable training
and estimation of variance networks [Detlefsen, Jørgensen, and Hauberg, 2019].

1.1 Separation of Uncertainty

Generally, all probabilistic inference fits some parameters θ of a given probability
distribution pθ. In machine learning the task can almost always be phrased as
predicting y(x), which probabilistically means optimising some form of pθ(y) or
pθ(y|x). Predictive uncertainty refers to the uncertainty, or variation, in y under the
predictive distribution pθ: what is the range of likely outcomes of y? UQ is
quantifying this variation.
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Inference only cares about predictive uncertainty, but for many applications deeper
questions about this quantity need answers. One occasionally hears people talk about
sources of uncertainty or randomness, i.e. the question is, why are we uncertain about
predicting y? Common sources are measurement noise, propagated uncertainty and
uncertainty due to lack of measurements.

This qualitative assessment of uncertainty is central to tasks like Bayesian optimisation,
where we wish to minimise a black-box function f(x) over some bounded set X . Here
the exploration-exploitation trade-off is the key driver in the algorithm: should we
exploit the information we already possess, or should we explore regions of X to gain
more information? In Section 1.2 we introduce Bayesian inference, which — roughly
said — is a treatment of UQ in the language of probability theory.

The next two subsections provide some notions of sources of uncertainty. I have to say
that although aleatoric and epistemic uncertainty are ‘well-established’ notions in the
literature, their uses are almost always ad-hoc. They do not provide an exhaustive or
unique separation of uncertainty, nor are they mutually exclusive. In in this ad-hoc
view, I present both aleatoric and epistemic uncertainty.

1.1.1 Aleatoric Uncertainty

Aleatoric originates from the Latin word aleator, meaning gambler or dice-player.
The dice-player serves as a suiting analogy for explaining what aleatoric uncertainty
is. Throwing a dice countless times to predict the outcome of the next throw, the
experimenter will soon realise that misprediction occurs on average 5

6
times. This rate

is independent of the amount of data gathered in the experiment; the uncertainty is
irreducible.

The irreducibility of aleatoric uncertainty is always conditioned on the model. We
could reduce the noise by considering a different model, for example considering new
features or changing the structure of the model. This only highlights there is
uncertainty associated with our choice of model too; often we call this structural
uncertainty or bias. Let ε be some noise with variance 1 and mean 0, and consider
data generated by the additive form y(x) = E[(y(x)|X = x] + σ2ε. Our model, f(x),
would try to approximate E[y(x)|X = x] and we could define, and split, the error as:

Error(x) : = E[(y(x)− f(x))2] (1.1)

=
(
E[f(x)]− E[y(x)|X = x]

)2︸ ︷︷ ︸
Bias2

+Var
(
f(x)

)
+ σ2

f , (1.2)

where σ2
f would be the aleatoric uncertainty conditioned on the model f .

Overfitting is a common issue in machine learning, and it is a consequence of
aleatoric uncertainty underestimation: we start detecting a signal in the noise. On
this inspection, regularization techniques are tools for accurately estimating the size
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of the noise in the data, or equivalently removing model bias. Overfitting is exactly
the situation in (1.2) where σ2

f < σ2, because we introduce a bias towards the
training data.

1.1.2 Epistemic Uncertainty

Again, we assume a model f(x) = E[Y |X = x]. The uncertainty that is associated
with f is what we will call epistemic uncertainty. The theorem of total variance states

Var(Y ) = Var(E[Y |X]) + E[Var(Y |X)], (1.3)

which if we assume there is no bias, then σ2
f from (1.2) approximates the last term

on the right-hand side of (1.3) and Var(f(x)) approximates the Var(E[Y |X]). In this
additive model f , Var(E[Y |X]) is what we will call epistemic variance. In this simplistic
case, the predictive variation is merely the sum of aleatoric and epistemic variation.
While the aleatoric uncertainty is irreducible, we get more and more certain about f
as we see more data.

Example 1.1 Assume we have N i.i.d. samples {xi}Ni=1 from a univariate Gaussian
N (µ, σ2), but µ and σ2 are unknowns. The maximum likelihood estimator for µ is given
by the average

µ̂ =
1

N

N∑
i=1

xi ∼ N
(
µ,
σ2

N

)
, (1.4)

and the maximum likelihood estimator for the variance σ2 is

σ̂2 =
1

N − 1

N∑
i=1

(xi − µ̂)2 ∼ σ2

N − 1
χ2(N − 1). (1.5)

We observe that our model, i.e. N (µ̂, σ̂2), has less uncertainty associated to its
parameters as the sample size N increases.

It is in light of examples like the one above that epistemic uncertainty is often also
called model uncertainty. It vanishes as the sample size increases. This however is
subsumed by model identifiability, which means that our model is defined such that
the true parameters can be obtained in the limit of infinite data. Identifiability is a
condition, that is severely challenged by most modern machine learning models.

1.2 Bayesian Inference

Bayesian modelling assists us in formalising the discussion of epistemic uncertainty. I
will review Bayesian probability theory and later on the approximate inference that
allows us to efficiently model in this regime.
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Example 1.1 illustrates that, given finite data, our estimators are uncertain. The
distributions of the estimators indicate that the parameters could be estimated well
by a range of point estimates. Alternatively, (1.4) states

µ ∼ N (µ̂, σ2/N), (1.6)

meaning that the ground truth parameter µ follows a distribution that is dependent
on the data through µ̂. In fact, the distribution in (1.6) is the posterior distribution
of the mean parameters, given an improper prior distribution. These words are yet
to be described, but this illustrates what Bayesian modelling is: we can represent our
uncertainty about quantities using probability distributions.

A statistical model is a mathematical formulation of assumptions we make about how
to generate data. It is helpful to think of this as a relationship between random
variable(s) and possibly some non-random variables. To perform inference, we place a
likelihood function at the top of the model. This allows us to compute the ‘probability’
of an event under our model. If we denote our model S, which is parametrized with
some parameters θ, we can generate data y. The model then specifies a probability
distribution over θ and y

p(y,θ|S) = p(y|θ,S)p(θ|S), (1.7)

where p(y|θ,S) is the likelihood function and p(θ|S) is the prior distribution of our
parameter(s) θ. Both of these are determined by our model assumptions.

The prior distribution is, as the name suggests, determined before (a priori) seeing
data, and thus represents our uncertainty about the parameters before seeing the data.
Bayesian inference is about determining the posterior distribution of the parameter(s);
that is, the distribution after (a posteriori) seeing data: p(θ|y,S). Bayesian inference
has its name from the equation that links these distribution together, Bayes’ rule:

p(θ|y,S) =
p(y|θ,S)p(θ|S)

p(y|S)
. (1.8)

Here, the denominator on the right-hand side, is called the marginal likelihood, given
by

p(y|S) =

∫
p(y|θ,S)p(θ|S)dθ, (1.9)

which illustrates one of the dominant difficulties of Bayesian inference, this integral is
rarely easily available.

The distinction between model S and parameters θ is not crystal clear, and as such
from the Bayesian perspective this is not an issue, as we could also marginalise the
model by selecting a prior over models p(S) and using Bayes’ rule

p(S|y) =
p(y|S)p(S)

p(y)
=

p(y|S)p(S)∫
p(y|S)p(S)dS , (1.10)

which shows that the Bayesian framework also is suitable for model selection.



1.2 Bayesian Inference 7

1.2.1 Approximate Inference

In the previous section, we stated that the marginal likelihood (1.9) is intractable for
many models. This section is dedicated to approximating the intractable posterior
that arises from this problem. In particular, we will focus on variational inference,
that aims to minimise the ‘distance’ or ‘difference’ between the true posterior1 p(θ|y)
and a tractable approximate distribution q(θ).

First of, we need to make clear how we measure the difference between two
distributions. To this end, we consider the Kullback-Leibler divergence
(KL-divergence) defined as

KL(q‖p) =

∫
X

log

(
q(x)

p(x)

)
q(x)dx, (1.11)

where X is the support of the probability measure p. The first important thing to
notice is that KL(q‖p) = 0 iff p = q almost surely wrt. q. Further, KL(q‖p) ≥ 0
always. With this in mind, we can think of the KL-divergence as a quantification of
how different two distributions are. We note that it is not a metric in any geometric
sense, as neither symmetry nor triangle inequality is satisfied.

Thus, variational inference tries to infer a distribution q(θ), from some tractable family,
that is close — in the KL sense — to the true posterior p(θ|y). In general, it is
impossible evaluate KL(q(θ)‖p(θ|y)) as the true posterior is unknown, but we can use
Bayes’ rule

KL(q(θ)‖p(θ|y)) =

∫
log

(
q(θ)

p(θ|y)

)
q(θ)dθ

=

∫
log

(
p(y)q(θ)

p(y|θ)p(θ)

)
q(θ)dθ (1.12)

=

∫
log p(y)q(θ)dθ −

∫
log p(y|θ)q(θ)dθ +

∫
log

(
q(θ)

p(θ)

)
q(θ)dθ

= log p(y)− Eq[log p(y|θ)] + KL(q(θ)‖p(θ)).

Thus, we have

0 ≤ log p(y)− Eq[log p(y|θ)] + KL(q(θ)‖p(θ)) (1.13)
⇐⇒ log p(y) ≥ Eq[log p(y|θ)]−KL(q(θ)‖p(θ)) (1.14)

with equality in (1.14) if and only if q(θ) = p(θ|y). Since the left hand side of (1.14)
does not depend on q, we can maximise the right hand side, which consists only of
tractable quantities. Hence, minimising KL(q(θ)‖p(θ|y)) is equivalent to maximising

L(q) := Eq[log p(y|θ)]−KL(q(θ)‖p(θ)), (1.15)

where L(q) is called the evidence lower bound, or for short: the ELBO.

1In this section, we leave out the S-notation for the model.
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This technique turns a difficult integration problem into a simple optimisation problem.
However, for practical and computational reasons it is often necessary to have q be of a
rather simple form and assume all the parameters are independent, often referred to as
mean-field approximation. These approximations scale to complex and large models,
however not result efficient.

Without detailing it, we note here another common technique for approximate
Bayesian inference is Markov Chain Monte Carlo (MCMC). Here, one averts the
integration problem by sampling from a Markov Chain which has an ergodic
distribution equal to the true posterior. For a broader and deeper review on MCMC
methods, we refer to Asmussen and Glynn [2007].

1.3 Neural Networks

Deep learning is a principal discipline of machine learning. The deepness does not
entail the learning is more profound, but refers to a (deep) hierarchy of simpler models.
These simpler models are often linear regression models

h(x) = Wx+ b, (1.16)

where W is a matrix of parametric values often referred to as weights. b is the
interception, often referred to as bias. A deep neural network is a composition of such
simple models. However, a composition of linear regressions is a linear regression itself,
and they simply do not cut it for large and complex datasets. To this end, to each of
the simple models we associate non-linearites, so

h(x) = σ(Wx+ b). (1.17)

The non-linearities σ, called the activation functions, are element-wise surjective maps
into subsets of R, such as [0,∞), [−1, 1] or [0, 1]. Popular choices are the ReLU, tanh
or sigmoid functions. The simplest of neural networks, the multi-layer perceptron
(MLP), can then be written

f(x) = hL(hL−1(· · ·h2(h1(x)) · · · )), (1.18)

and we say that f is a neural networks with L layers.

The simplicity of the layers means that much research in deep learning deals with
how to connect and stack these simple models to compose models that can handle
complicated data. Such data could for example be images, to which end
convolutional neural networks [LeCun and Bengio, 1998] are helpful. They usually
consist of some convolutional and pooling layers. Convolutional layers are linear
operation that summarise spatial information of images, while pooling layers reduce
the dimensionality of the pixels — also in a spatially consistent way.

To handle temporal or other sequential data one would use recurrent neural networks.
The simplest description of these is that they generate a sequence of hidden states
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z1, . . . , zT , based on observed sequence x1, . . . ,xT ,

zt+1 = σz(W zxt +Uzt + bz), (1.19)

and the model output yt, t = 1, . . . , T , can then be computed from the hidden states

yt = σy(W yzt + by). (1.20)

More advanced recurrent structures are available through Long Short-term Memory
units [Hochreiter and Schmidhuber, 1997] and similar.

In this thesis, we will only consider the simplest neural networks — the MLP, or
fully connected feed-forward network, as presented with (1.18). We will not focus on
prediction, but on assessing uncertainty to the predictions.

1.3.1 Uncertainty Quantification in Neural Networks

Neural networks can be used for diverse tasks such as medical diagnosis from images,
autonomous driving, and voice recognition. The potential consequences of these
decision-making systems are immense. What happens when your vehicle is
confronted within an unforeseen event? The vehicle was perhaps trained on data
from Los Angeles and has never seen a bicycle before. Although silly, this example
illustrates the need for solutions in more realistic cases. One first attempt at a
solution is to make the model treat such cases by returning not only a prediction,
but return a notice that the observation lies outside of the data distribution used for
training the neural network. Such information can be encoded by returning a high
uncertainty in the prediction.

Good uncertainty estimation can also improve the model’s prediction. This approach
is often known as active learning [Settles, 2009]. Here, the model will identify which
unlabelled data will increase its own performance by asking a human annotator to label
these new data points. Often the model will use its own uncertainty quantification to
choose these points. If done successfully, this can dramatically decrease the amount
of required data needed for good model performance.

We will consider the task of quantifying the uncertainty in MLPs. To this end, we will
consider a likelihood function of our target variable y, and we will at first consider the
Gaussian likelihood

p(y|x) =

N∏
i=1

p(yi|xi) =

N∏
i=1

N
(
yi|µ(xi), σ

2(xi)
)
, (1.21)

hence now µ and σ are functions, that can be modelled as neural networks.

As a first attempt for uncertainty quantification we could try giving neural networks
the Bayesian treatment. Bayesian neural networks [MacKay, 1995] place prior
distributions over the neural network’s weights. This causes a distribution over
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functions. Often one places the unit Gaussian prior distributions over each individual
weight and often no priors on the bias vectors. The issue with Bayesian neural
network is not their construction, but the difficulty of inferring the posterior
distribution over all weights. Modern neural networks count their parameters in
billions rather than hundreds, and the ultimate success of Bayesian neural networks
is still awaiting. Approximate Bayesian inference schemes to scale to so large models
is an active field of research.

1.3.2 Pseudo-Bayesian methods

Currently, Bayesian inference is delivering results that are subpar to the strongest
candidates for uncertainty quantification. We will here focus on two of these methods
that are inspired by the Bayesian paradigm, but neither involve priors nor any kind
of posterior approximation. Their similarity lie in the fact that the models provide
a distribution over functions, and this will provide a language to talk about model
uncertainty without the Bayesian framework.

Monte Carlo Dropout. Neural networks have many parameters, which often
makes it necessary to introduce some kind of regularization to avoid overfitting. One
regularisation technique that is popular in the field is Dropout [Srivastava et al., 2014].
A Dropout layer is an exact copy of the previous layer, but each element is multiplied
with a Bernoulli variable with probability parameter p. That is

hl+1 = hl ◦U , (1.22)

where U is a vector of independent Bernoulli variables and ◦ denotes the Hadamard
product (element-wise multiplication). Thus, during training we switch off — at
random — some of the neurons in the neural network to make the model more
robust to such perturbations.

Gal and Ghahramani [2016] propose to let these Dropout layers approximate the
predictive uncertainty. That is for a new observation x∗ they can approximate the
predictive distribution p(y∗|x∗,X,Y ) by making M forward passes through the
network including the Dropout layers at test time. Then we can estimate the mean
µ(x)∗ and the variance σ2(x∗) with

µ̂(x∗) =
1

M

M∑
m=1

y∗m, (1.23)

σ̂2(x∗) = τ̂−1 +
1

M

M∑
m=1

y∗my
∗
m − µ̂(x∗)2, (1.24)

where τ is a measure of the noise in data, and is found by cross-validation.

Deep ensembles. A more straight-forward way of constructing a ‘distribution’
over functions is by training more than one deterministic function. This approach



1.4 A locally-aware sampler 11

was considered by Lakshminarayanan et al. [2017], and was inspired by bootstrapping
[Efron, 1979] and random forests [Ho, 1995]. They use an ensemble of M individual
neural networks, which each outputs a mean and a variance estimate [µ̂(x), σ̂2(x)].
Each network is initialised independent and separately and is trained by maximising
the log-likelihood. The outputs of the ensemble generates a mixture of Gaussians,
which they use to compute by a single Gaussian with mean and variance

µ(x) =
1

M

M∑
m=1

µ̂m(x), (1.25)

σ2(x) =
1

M

M∑
m=1

(
σ̂2
m(x) + µ̂m(x)

)
− µ(x), (1.26)

and this variance is used as the predictive uncertainty.

1.4 A locally-aware sampler

In Detlefsen, Jørgensen, and Hauberg [2019] we considered how to train variance
networks in a robust manner. By variance network we refer to a neural network
which output is used as the variance in a likelihood evaluation. Hence σ2(·) is a
variance network in the above. In this paper we propose some tricks for more reliable
estimations without looking to the Bayesian regime. Before detailing the approach,
we will consider again some of the desired properties a variance network would satisfy

(i) Generally, neural networks are overconfident, i.e. they underestimate the
predictive variance. We want well-calibrated variance.

(ii) We want the network to recognise out-of-distribution samples, and associates
such with a high variance.

(iii) Improved variance estimation must not harm predictive performance.

We consider inferring function µ and σ2 by gradient descent methods. Usually, in large
models it is favourable to consider stochastic gradient descent (SGD), which means
only considering a subset of the training set when taking gradient steps. SGD often
avoids local minima, that usual gradient descent otherwise gets stuck in. SGD works
when each subset of points — we will refer to this as a mini-batch — is an unbiased
approximation of the actual loss function, which is a sum of many summands (one for
each training point). In other words, the mini-batch is a representative sample of the
training set.

First, let us consider one explanation why variance estimation struggles when we do
not consider mini-batching, i.e. we compute our gradients with all the samples in the
batch. Then consider the gradient of the log-likelihood — our objective function —
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with respect to σ2

∂ log p(y|µ, σ2)

∂σ2
=

1

2σ2

(
(y − µ)2

σ2
− 1

)
. (1.27)

Thus, the gradients are larger for small values of σ2, which introduce a bias for
heteroskedastic noise, since regions of small variation have more dominating
gradients. This was first noted by Nix and Weigend [1994].

If we use mini-batching, it is a problem that the gradients wrt. σ2 have a very high
variance themselves. If we only have one sample, the maximum likelihood estimator
of the variance does not even exist, and the estimator converges much slower than the
mean estimator. Again if we have heteroskedastic noise, this introduces a problem as
some regions’ variance estimates are based on only one or two samples. We propose a
sampler that averts this issue.

Locality sampler. We construct σ2 as a continuous function, thus we are
implicitly ensuring that σ2(x) correlates with σ2(x + δ) for sufficiently small ‖δ‖.
The idea behind the locality sampler, as presented in Detlefsen, Jørgensen, and
Hauberg [2019], is to use this to construct an estimator of smaller variation. We
present the algorithm first.

Pre-compute For each datapoint xi in X, compute the k nearest neighbours in X. Store
them in a matrix κ of size N × k. Go to Primary units.

Primary units Sample m integers between 1 and N uniformly. We call these the m primary
units. Go to Secondary units.

Secondary units For each of the primary unit, say i, sample n points from the ith row of κ. Call
these points the secondary units. Go to Output.

Output All unique values of the secondary units are the output. If a new sample is
needed, go to Primary units.

The first step is a pre-computation to find the k nearest neighbours of each datapoint.
This is a daunting computational task, but luckily it is a one-off computation. At
the same time, there is no restriction to be exact and there exists computationally
attractive approximate methods for this task [Fu and Cai, 2016].

The primary sampling units are sampled uniformly among the data points, this way
they represent something global. In general, the number of primary units m should
be kept small; between 1 and 3 works fine for all our experiments.

Secondary units, are those that end up in the new mini-batch. Each primary unit
samples in a neighbourhood of itself, through the precomputed neighbours κ. In this
stage of sampling, we are interested in keeping things local, thus n should be kept
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small, but large enough to have a decent Monte Carlo estimate; here we recommend
in the range of 8− 20, depending on how dense the training set is.

Figure 1.1 visualise samples generated by the locality sampler. The red dots indicate
the chosen mini-batch. On the x-axis is the explanatory variable in which we measure
locality, and on the y-axis is the target variable in which we are interested in the
variation. From this visualisation it should be clear that it is easier to estimate the
variation locally, based on these sample as opposed to having red dots spread out with
little local information.

The locality sampler raises another issue: the mini-batch is not representative, since
some datapoints are more likely to appear in the batch than others. We can adjust
for this by using the Horvitz-Thompson estimator [Horvitz and Thompson, 1952], i.e.
rescaling the log-likelihood contribution of each sample xi by its inclusion probability
πi. An unbiased estimate of the log-likelihood (up to an additive constant) is then

N∑
i=1

{
−1

2
log(σ2(xi))− (yi − µ(xi))

2

2σ2(xi)

}
≈
∑
xj∈O

1

πj

{
−1

2
log(σ2(xj))− (yj − µ(xj))

2

2σ2(xj)

}

where O denotes the mini-batch. Based on the two-stage sampling algorithm, the
inclusion probabilities can be computed easily. The probability that observation j is
in the sample is n/k if it is among the k nearest neighbours of one of the initial m
points, which are chosen with probability m/N , i.e.

πj =
m

N

N∑
i=1

n

k
1j∈κ(i, ), (1.28)

where κ(i, ) denotes the k nearest neighbours of xi, which is also the ith row of κ.

Figure 1.2 shows a small experiment where we track the variance of the gradients
during training. We train for 5000 iterations in this small example, and the first

(a) Local mini-batch with 1
primary unit.

(b) Local mini-batch with 2
primary units.

(c) Local mini-batch with 3
primary units.

Figure 1.1: Three examples of mini-batches (marked with red) generated from
the locality sampler. In all cases n = 10, thus the batch sizes are
10, 20 and 30 from left to right. Black dots are the training set.
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Figure 1.2: Left : Variance of mean gradient. Right : Variance of variance
gradient. The variance network was disabled for the first 2500
iterations, to warm up the mean function for stable convergence.

2500 is solely training the mean with a constant fixed value for σ2. We are naturally
interested in the gradients of σ2. We note that the variance is significantly smaller
using the local sampler, and further there is a trend of it decreasing to some fixed
small value indicating that the gradients from this point are close to 0.

Sequential training. A small additional trick we introduce is to sequentially
update the networks µ and σ. The intuition is that when training σ2 we want to keep
µ fixed. This gives one extra degree of freedom in variance estimation (recall Example
1.1). We do not find that this training trick improve likelihood performance, but it
seems to stabilise training and be less sensitive to initialisation.

Student-t likelihood. Even with the locality-sampler, we may end up with
little data to approximate the true gradients. We propose a robust pseudo-Bayesian
workaround; instead of point estimating σ(x)2 we fit a distribution. This is not
imposing a prior, we are merely training the parameters of a hierarchical model. We
choose the inverse-Gamma distribution, which is conjugate prior of σ2 when the
likelihood is Gaussian. This means we have two parameters, α, β > 0, which are the
shape and scale parameter of the inverse-Gamma respectively. So the log-likelihood
is now calculated by integrating out σ2, which is inverse-Gamma

log pθ(yi) = log

∫
N (yi|µi, σ2

i )dσ2
i = log tµi,αi,βi(yi), (1.29)

where αi = α(xi), βi = β(xi) are modelled as neural networks. The predictive
distribution is now a located-scaled Student-t distribution, parametrized by µ, α and
β. This is a common replacement of the Gaussian when data is scarce and the true
variance is unknown and yields a robust regression [Gelman et al., 2014, Lange et al.,
1989].

Variance extrapolation. Up to this points we are yet to consider how we
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detect out-of-distribution observations. The method we will consider for this is
inspired by the variance extrapolation seen in Gaussian processes with stationary
kernels. Gaussian processes will be thoroughly introduced in Chapter 2. We will also
take inspiration in the inducing point methods from these field.

We will mimic this behaviour by letting the variance network go to an a priori
determined value η, if evaluated at a point x∗ far away from the training data. To
this end, let {ci}Li=1 be points in RD that capture the structure of the training data,
akin to inducing points in sparse Gaussian processes [Snelson and Ghahramani,
2006]. We may think of e.g. k-means. Now define δ(x∗) = mini ‖ci − x∗‖ and

σ2(x∗) =
(
1− s(δ(x∗))

)
σ̂2 + ηs(δ(x∗)), (1.30)

where s : [0,∞)→ [0, 1] is an increasing function. Here σ̂ is what the variance network
outputs, and we can think of this as a post-processing of the variance estimate. This
variance estimate will then tend to η as δ →∞ at a rate determined by s. In practice,
we let s to be a scaled-and-translated sigmoid function

s(x) = sigmoid((x+ a)/γ), (1.31)

and meanwhile ensure that s(0) ≈ 0 by fixing a to a linear function of γ. The inducing
points ci are initialised with k-means and optimised during training.

In summary, the final variance estimate is a convex combination of η and the variance
network output. It lies close to the network output, when x∗ lies close to the inducing
points {ci}Li=1, but close to η if not. Thus, the behaviour mimics that of Gaussian
process posteriors.

1.5 Model uncertainty and noise

One thing that the methods presented by Detlefsen, Jørgensen, and Hauberg [2019] pay
little attention to is a separation of epistemic and aleatoric uncertainty. This section
provides a way to think about these notions in terms of the Student-t likelihood.

Recall, the conjugate prior of the variance σ2 in a Gaussian with known mean µ is
an inverse Gamma distribution with shape and rate parameters α > 0 and β > 0.
Marginalising this prior out yields to the following Student’s t-distribution:

p(y | µ, α, β) =

∫ ∞
0

βα

Γ(α)
τα−1e−τβ

( τ
2π

) 1
2
e(−

τ
2

(x−µ)2)dτ

=
βα

Γ(α)

1√
2π

∫ ∞
0

τ(α+ 1
2 )−1e−τ(β+(x−µ)2/2dτ

=
βα

Γ(α)

1√
2π

Γ(α+ 1
2
)(

β + 1
2
(x− µ)2

)α+ 1
2

,

(1.32)
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where we reparametrize in terms of precision, i.e. if σ2 ∼ Inv-Gamma(α, β) then
τ = 1

σ2 ∼ Γ(α, β) and use the properties of Gamma integral. This is the same as
(1.29).

We can compute the first two moments

E[y] = µ, (1.33)

Var(y) =
β

α− 1
=
β

α

α

α− 1
. (1.34)

By a bijective transformation of the parameters ν = 2α and κ = β/α, we can now see
that

y ∼ µ+ κt(ν), (1.35)

where ν denotes the degrees of freedom of the t-distribution and κ is a scaling
parameter. Note we here constrain α > 1 to have positive variance. We recall that
Var(t(ν)) = ν/(ν − 2), or equivalently α/(α− 1), and its limits for ν →∞ and ν → 2
are 1 and ∞, respectively.

This inspection suggests we may regard α/(α − 1) as a proxy for the epistemic
uncertainty, since it vanishes as we see more data — the degrees of freedom increase.
By vanishing we mean the predictive variance, (1.34), reduces to β/α, which we
interpret as the variation from noise in the data — aleatoric uncertainty. The model
we propose for uncertainty quantification and extrapolation consists of three neural
networks. One for the mean prediction µ, one to account for epistemic uncertainty
and extrapolation α, and one for aleatoric matters β.

In practice, we train µ and α together and β on its own. We do this sequentially as
suggested above. We use the locality sampler to train β. For α, we train with the
variance extrapolation (inducing points method), but not with a predefined value η.
Instead we can set

α(x) = α̂(x)
(

1− s(δ(x)
)

+ s(δ(x)), (1.36)

where α̂ is the output of the network. Thus, when α(x∗) → 1, because the point x∗

moves away from the training data, then Var(y∗)→∞, as a consequence of (1.34). It
is this model we will evaluate in the next section.

1.6 Experiments

I thank Federico Bergamin for good discussions and help with the
experiments in this section.

1-D Regression Example. We analyse our method on a simple 1D regression
example. We generate 500 observations from the function

y = x · sin(x) + 0.3 · ε1 + 0.3 · x · ε2, (1.37)
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Figure 1.3: Top row : Simple one-dimensional target with a dense dataset.
Bottom row : Same true function, but with a non-dense dataset.
The columns correspond to the three considered methods. We
observe how only our method extrapolates, and two standard
deviations covers the true underlying function in both cases.

where ε1, ε2 ∼ N (0, 1). We sample our x uniformly in the interval [0, 10]. We will also
consider sampling x uniformly in the intervals [−2, 0] and [6.5, 10]. This is to evaluate
the extrapolation features.

The results are shown in Fig. 1.3. Here the top row represents the dense dataset
and the bottom row represents the dataset with observations in two disjoint intervals.
Our method and Deep Ensembles capture the heteroscedastic variance within the data
regions without underestimating it. MC-Dropout underestimates the variance within
the data region. Outside the data region and in-between cluster regions we see only our
method extrapolates high variance. Two standard deviations (shaded pink) covers the
true underlying function for all x. Deep Ensembles and MC-Dropout fail to extrapolate
high uncertainty both outside and in-between data region.

The relationship between α and β is plotted in Figure 1.4. We observe that α learns
the absence of data by going to 1, while β learns the increasing noise as a function of x.
The values of β are arbitrary outside the data domain. α has a tendency to decrease
with x, inside the data domain; this is both a wanted and unwanted behaviour, as
model uncertainty would correlate negatively with noise, but should also represent the
density in x.

UCI Benchmark. We evaluate the method on the UCI Regression Benchmark
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Figure 1.4: Left : α and β on dense data. Right : α and β on data with gap.

introduced by Hernández-Lobato and Adams [2015]. Beyond this, we will consider
the same dataset but preprocessed as suggested in Foong et al. [2019]; they suggest
making the test-sets be the middle third of some feature when that feature is sorted.
That is, for each variable in the input space, sort it and keep the points in the middle
third out to use as a test set. By doing so, they can hope to create holes as we saw
in the 1-D simulated example. The aim is again to see the extrapolation capabilities,
but on real data. We refer to these splits as gap splits. For the standard splits, we use
70/30 for train-test to make it comparable to the approach of Foong et al. [2019].

The evaluations are seen in Table 1.1 for the random splits, and in Table 1.2 for
the gap splits. A good uncertainty estimator should have good performance on the
random splits and avoid catastrophic failure on these tailored splits. We observe that
our method is competitive in both regimes; we especially note the small variation over
the gap splits our method has compared to Deep Ensembles and MC-Dropout. This
indicates more robustness towards unexpected test-set, or out-of-distribution samples.
This is especially noticeable on the Energy and Naval datasets.

Future directions

The contribution in this chapter introduces methods for a single network to represent
the uncertainty, or variance, of a regression model. The natural extension could be to
‘ensemble’ these too, potentially getting even better epistemic uncertainty estimates.
The approach we took by modelling the degrees of freedom as a proxy for the
epistemic uncertainty shows some promise of delivering good results. This area
generally has been studied scarcely in the literature of neural networks [Gao and
Jojic, 2016]. However, some parallels can be drawn with investigations into influence
functions [Madras et al., 2019].
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Dataset Deep Ensembles MC-Dropout Our

Boston -2.722 ± 0.222 -2.461 ± 0.163 -2.497 ± 0.092
Concrete -2.896 ± 0.150 -3.003 ± 0.051 -3.079 ± 0.093
Energy -1.507 ± 0.671 -1.242 ± 0.041 -1.315 ± 0.010
Kin8nm 1.202 ± 0.013 1.053 ± 0.018 1.258 ± 0.029
Naval 4.327 ± 0.474 4.190 ± 0.080 5.526 ± 0.660
Power plant -2.756 ± 0.018 -2.823 ± 0.018 -2.791 ± 0.012
Protein -2.812 ± 0.007 -2.913 ± 0.005 -2.814 ± 0.016
Wine (red) -1.163 ± 0.138 -0.938 ± 0.023 -0.920 ± 0.023
Yacht -0.127 ± 0.208 -1.284 ± 0.052 -0.957 ± 0.156

Table 1.1: Test log-likelihoods on the UCI dataset when using random splits.
Results are the average of 10 different train/test splits, apart from
the Protein dataset where we only used 5 splits. Higher is better.

Dataset Deep Ensembles MC-Dropout Our

Boston -2.972 ± 0.445 -2.516 ± 0.190 -2.579 ± 0.107
Concrete -3.742 ± 0.234 -3.368 ± 0.120 -3.614 ±0.206
Energy -5.595 ± 7.905 -3.827 ± 2.987 -2.905 ± 0.477
Kin8nm 1.186 ± 0.052 0.978 ± 0.091 1.222 ± 0.066
Naval 0.195 ± 4.273 2.136 ± 0.815 2.742 ± 0.154
Power plant -2.907 ± 0.085 -2.924 ± 0.037 -2.934 ± 0.050
Protein -2.975 ± 0.068 -3.039 ± 0.048 -3.068 ± 0.057
Wine (red) -1.553 ± 0.209 -0.970 ± 0.046 -0.930 ± 0.047
Yacht -1.330 ± 0.331 -2.031 ± 0.624 -1.809 ± 0.296

Table 1.2: Test log-likelihoods on the UCI dataset when using gap splits, there
are as many splits as features in the datasets. The aim is to study if
the method is able to estimate the in-between uncertainty. Higher
is better.
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The issue of having ‘inducing points’ in the network was inspired by Gaussian processes
— which will be formally introduced in the next chapter — and, recently, there has
been inquiries into how many of these are needed to well-approximate the true posterior
[Burt et al., 2019]. However, the issue here is different. Nevertheless, it would be
important to have similar studies for how many of these points are needed; and just
as important: how to train and initialise them. A radically different approach would
be to discard them altogether. We use them to extrapolate variances, but this can
potentially be achieved in other ways.

An idea to this end would be to, in an efficient manner, ‘count’ the number of activated
neurons in the first layer. Intuitively, there should be numerous such activations ‘on’
for the training set (and naturally also for test points close to the training set). The
number of activations away from the training set, however, is arbitrary. We have begun
small experiments to this end, but are yet to overcome this arbitrary behaviour away
from the training data to reach the coveted quantities of variance networks.

In the paper [Detlefsen, Jørgensen, and Hauberg, 2019], we further did experiments for
variational autoencoders, but exclusively used the methods on the decoder part. But if
good epistemic uncertainty estimates are available, it would be interesting to examine
if they have a big effect on the encoder as well. Lastly, the impact on classification
tasks has not been investigated.



Chapter 2

Stochastic Processes and
Fields

The previous chapter focused mostly on uncertainty quantification in neural network
models. In this chapter, we turn to a class of functions that are notoriously famous for
exactly UQ – Gaussian processes. Their ‘supremacy’ in UQ is due to their Bayesian
nature, and we will see that optimisation essentially is redundant, since posteriors can
be computed in closed form. That sounds too good to be true, and unfortunately, in
practice, it is. We will see approximations to Bayesian inference in Gaussian Processes,
that allow us to scale these method to large datasets.

We will also focus on Wishart processes and Itô processes. With these three types
of processes we present a very flexible model for both deep learning and dynamical
systems. This is based on the paper Stochastic Differential Equations with Variational
Wishart Diffusions [Jørgensen, Deisenroth, and Salimbeni, 2020].

We begin this chapter by formalising what a stochastic process is. As such, the word
process makes one’s mind think of something developing over time. This analogy is
comprehensive for many use-cases of stochastic processes, but they are more flexible
than so. A stochastic process has an associated non-empty index set X and state space
Y. A collection of random variables {Y (x)}x∈X , taking values in Y, is then said to be
a stochastic process.

Example 2.1 (Random walk) Consider an index set X = N0 and state space
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Z, define a stochastic process by

Y (n) = 0 for n = 0, and Y (n) = Y (n− 1) + Un for n > 1, (2.1)

where Un is a random variable, which is 1 with probability 1
2
and −1 with probability

1
2
. Here Y is a stochastic process, usually referred to as a random walk, where each

state is dependent on its left neighbour in the index set.

In the above example, it is intuitive to think of the index set as a discrete temporal
feature: how many steps has been taken. Y (n) is the state of the process after n steps,
and it becomes more difficult to predict this state as n increases, unless we condition
on one of the previous states, e.g. if we know Y (n− 1) = 2, we know Y (n) ∈ {1, 3}.

We can think of situations where the index set does not have a temporal flavour. This
could be geological locations, often the case in geostatistics, where kriging is a common
method for interpolating locations.

Parameters or not. In Chapter 1 we consider parametric models, namely neural
networks, which have the property that

p(y∗|θ,D) = p(y∗|θ), (2.2)

where D denotes the training set and θ are the parameters of the model. This means
that all information from the training set is conveyed by the parameters of the model.
In this sense, we can not guarantee that new predictions, say y∗, make use of the whole
training set. Parametric models are convenient for a multitude of reasons, especially
the capability of compressing very large datasets. In a sense, what we will propose
in the next sections can be viewed as non-parametric, as we will not compress the
dataset in parameters, but keep the entire dataset in memory. Perhaps, unintuitively
non-parametric models can be seen as having infinite-dimensional parameter spaces
[Orbanz, 2012], hence providing very flexible models. Bayesian non-parametrics is a
framework for placing priors over non-parametric models and Gaussian processes are
in this framework.

2.1 Gaussian Processes

Definition 2.1 A Gaussian process is the stochastic process satisfying that for
any finite collection (x1,x2, . . . ,xN ) ⊂ X , for any N ∈ N, we have that(
Y (x1), . . . , Y (xN )

)
follows a N -variate Gaussian distribution.

Necessarily, this implies that the state space of a Gaussian process is R. Furthermore,
it implies we can always write

Y ∼ N
(
µ,Cov(Y ,Y )

)
, (2.3)
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where Y =
(
Y (x1), . . . , Y (xN )

)>, µ = (µY (x1), . . . , µY (xN ))
> and

Cov(Y ,Y )=


Cov(Y (x1), Y (x1)) Cov(Y (x1), Y (x2)) · · · Cov(Y (x1), Y (xN ))

Cov(Y (x2), Y (x1))
. . .

...
...

. . .
...

Cov(Y (xN ), Y (x1)) · · · · · · Cov(Y (xN ), Y (xN ))

 ,

(2.4)
is a symmetric and positive semi-definite N ×N -matrix.

Gaussian distributions are uniquely determined by their first two moments, and the
same applies to Gaussian processes. In this light, it would be convenient if we could
determine the first two moments solely with the index set. Initially, let us consider
the simplistic case Cov(Y ,Y ) := XX>, where X = (x1, . . . , xN ). Here, we assume
the index set is R, but it generalises to Rd, for d > 1. Clearly, XX> is symmetric and
positive semi-definite. Now let us consider the reparametrization trick, as it has been
dubbed in the deep learning community. It holds that

Y ∼ N
(
µ,Cov(Y ,Y )

)
∼ µ+LU , where U ∼ N (0, IN ), (2.5)

if L is a N ×N -matrix such that Cov(Y ,Y ) = LL>.

In the simplistic case, we can choose L := (X,0, . . . ,0), i.e. the N ×N -matrix with
first column X followed by N − 1 columns of 0. This implies that (2.5) further is
simplified by

Y ∼ µ+ UX, where U ∼ N (0, 1), (2.6)

which is a linear regression model with random standard Gaussian slope coefficient!

By inspecting this covariance matrix

XX> =


x1x1 x1x2 · · · x1xN

x2x1

. . .
...

...
. . .

...
xNx1 · · · · · · xNxN

 , (2.7)

we see that each entry is an inner product of observations pairwise.

The kernel trick. The linear regression above followed easily from the most
naive choice of positive semi-matrix matrix, but linear regression is not a particularly
flexible model. To introduce non-linearity we consider the kernel trick. The idea is to
find a map ϕ : X → H, and do the linear regression in the space H, which often is
of higher dimension than X . This requires that the inner product 〈ϕ(xi), ϕ(xj)〉H is
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well-defined for all pairs (xi,xj). We will also require that the covariance matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )

k(x2,x1)
. . .

...
...

. . .
...

k(xN ,x1) · · · · · · k(xN ,xN )



:=


〈ϕ(x1), ϕ(x1)〉H 〈ϕ(x1), ϕ(x2)〉H · · · 〈ϕ(x1), ϕ(xN )〉H
〈ϕ(x2), ϕ(x1)〉H

. . .
...

...
. . .

...
〈ϕ(xN ), ϕ(x1)〉H · · · · · · 〈ϕ(xN ), ϕ(xN )〉H

 ,

(2.8)

is positive semi-definite. In the above, we defined the function
k(xi,xj) := 〈ϕ(xi), ϕ(xj)〉H. Thus k must ensure K to be positive semi-definite.

Definition 2.2 A positive semi-definite function is a function k : X ×X → R such
that for any finite collection {xi}Ni=1 of elements from X , the matrix K from (2.8) is
positive semi-definite. Equivalently,

N∑
i=1

N∑
j=1

k(xi,xj)cicj ≥ 0, (2.9)

for any sequence (c1, . . . , cn) of real numbers.

To sum this far, K is a valid covariance matrix, if k satisfies: (i) k(xi,xj) ≥ 0 if i = j,
(ii) k(xi,xj) = k(xj ,xi) and (iii) k is a positive semi-definite function. We say k is a
covariance function if it satisfies (i)-(iii).

With this construction, it is true that

Y ∼ N (µ,K), (2.10)

whenever k is a covariance function on X . The Kombasi-Karhunen-Loève theorem also
gives the other direction: if Y is a Gaussian process such that Cov(Y (xi), Y (xj)) =
k(xi,xj), then k is a covariance function and further

Y (x) = µ(x) +

∞∑
n=1

Unφn(x), where Un ∼ N (0, λn), (2.11)

where {φn, λn}∞n=1 are the eigenfunctions and eigenvalues of the covariance function
respectively. That is, the possibly infinite number of pairs, which satisfy the equation∫

X
k(x,x∗)φ(x)dν(x) = λφ(x∗), (2.12)

where ν is a suitable probability measure on X . The eigenfunctions make up an
orthonormal basis of H, and as such we should view (2.11) as a linear regression of
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these basis functions in the space H — the space ϕ maps to. The ‘trick’ in the kernel
trick is that we never have to visit this space, we never explicitly formulate the mapping
ϕ, when the kernel k is known.

Kernels. We will go over some typical kernels, and show how modern approaches
have increased the flexibility of these. As seen earlier, the simplest kernel is the inner
products of inputs itself

k(xi,xj) = α〈xi,xj〉+ β, (2.13)

which, as we saw, gave a linear relationship between inputs and outputs. In a
straightforward way, we can generalise to polynomial regression by multiplying the
kernel with itself. That is,

k(xi,xj) =
(
α〈xi,xj〉+ β

)d
, (2.14)

is also a covariance function and makes a polynomial relationship of inputs and outputs.

This construction is a feature of a more general design: the space of kernel functions
are closed under both multiplication and addition. This implies, if k1 and k2 are
both kernel functions, then both k1 + k2 and k1k2 are kernel functions too. Designing
kernels are one of the major challenges of Gaussian process modelling and this
characteristic of kernels provide a flexible construction, as for example used by
Duvenaud et al. [2011]. Here, we also remark another aspect of kernels that provide
adaptable modelling choices. We can change the inputs to the kernel with a function
g : X → g(X ) and k(g(xi), g(xj)) is still an inner product. This was used by Wilson
et al. [2016] and Calandra et al. [2016].

Arguably, the most popular kernel in machine learning is the Radial Basis Function
(RBF), also known as the Gaussian kernel, which is given by

k(xi,xj) = σ2 exp
(
− ‖xi − xj‖

2

2γ

)
, (2.15)

where γ is known as the lengthscale, that dictates whether the outputs have long- or
short range dependencies in the input space. σ2 is referred to as the signal variance.
By applying some of the aforementioned features, we can generalise this kernel using
Automatic Relevance Determination (ARD) which transforms the input space with a
positive diagonal matrix A

k(xi,xj) = σ2 exp
(
− ‖Axi −Axj‖

2

2

)
= σ2 exp

(
−

d∑
l=1

‖xil − xjl‖2
2γl

)
, (2.16)

where d is the dimension of the input space and l denotes the l-th dimension of it.
We see All = 1

γl
, and as such each dimension now has its own lengthscale. Inferring

these lengthscales has the potential of determining the relevant features and turn off
the irrelevant ones, hence the name ARD. We will refer to this kernel (2.16) as the
ARD-kernel. Other notable mentions of popular kernels are the Matérn kernels, which
we will not detail here.
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Distributions over functions. Mathematically, the definition of a GP
(Definition 2.1) does not mean that it is a stochastic process. For this to hold the
infinite collections {Y (x)|x ∈ X} needs to be measureable as well. Fortunately,
Kolmogorov’s extension theorem informs us that there exists a measurable stochastic
process with marginals defined as the GP. It is in this light, that we can say that
GPs provide distributions over function spaces. These distribution are then, as we
have argued fully determined by their first two moments, which respectively is a
mean function µ : X → R and a covariance function k : X × X → R. For this
distribution over functions f we denote it

f ∼ GP(µ, k), (2.17)

and we say that f is a Gaussian process. For all our uses X = Rd. We will later look
at the case when the state space is multidimensional, i.e. RD. But first, we will look
at conditioning in Gaussian processes.

2.1.1 Conditioning and posterior distributions

Gaussian processes are distributions over functions, so this opens the possibility of
giving them the Bayesian treatment. Naturally, we will then be interested in the
posterior distribution of f . So now assume that our prior distribution of f is given
f(x) ∼ GP

(
µ(x), k(x,x∗)

)
for well defined mean function µ : Rd → R and valid

covariance function k : Rd × Rd → R.

Now suppose we have seen some data D = {xi, f(xi)}Ni=1. We will then be interested in
the posterior of f , i.e. the distribution of f |D. Fortunately, the Gaussian assumption
makes this easy with the following theorem.

Theorem 2.3 Let X ∈ RN and Y ∈ RM follow a joint multivariate Gaussian
distribution (

X
Y

)
∼ N

((
µX
µY

)
,

(
A C

C> B

))
, (2.18)

then the conditional distribution X|Y is given by

X|Y ∼ N
(
µX +CB−1(Y − µY ),A−CB−1C>

)
. (2.19)

This easily lets us compute the posterior. If we letX = (x1, . . . ,xN )> and f = f(X),
then for any point x∗ ∈ Rd we have

f(x∗)|D ∼ N (µ̃(x∗), K̃), (2.20)

where

µ̃(x∗) = µ(x∗) + k(x∗,X)k(X,X)−1(f − µ(X)), (2.21)

and K̃ = k(x∗,x∗)− k(x∗,X)k(X,X)−1k(x∗,X)>, (2.22)
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where k(a, b) denotes and matrix of dimension numbers of rows in a times number
of rows in b. The entries are given k(a, b)ij = k(ai, bj), i.e. the respective kernel
evaluations.

As noted in the previous chapter, we need to specify a likelihood to specify a full
statistical model. This complicates matters in obtaining the posterior, but there is one
likelihood for which the Gaussian process is a conjugate prior, meaning the posterior
belongs to the same family as the prior, i.e. the Gaussian family. It just so happens,
that this likelihood is also the Gaussian, specifically given by

yi ∼ N (f(xi), ε), ε > 0. (2.23)

This means our datasets is now D = {xi, yi}Ni=1, and the statistical assumption is
that yi is obtained from f(xi) and some added Gaussian noise of size ε. Further, it
is assumed that condition on f , the observation become independent. This means the
likelihood function is

L(y|f, ε) =

N∏
i=1

N (yi|f(xi), ε). (2.24)

As stated, under this likelihood the posterior of f is known, and the posterior mean
and covariance, at some point x∗, is given

µ̃(x∗) = µ(x∗) + k(x∗,X)
(
k(X,X) + εIN

)−1
(f − µ(X)), (2.25)

and K̃ = k(x∗,x∗)− k(x∗,X)
(
k(X,X) + εIN

)−1
k(x∗,X)>, (2.26)

which is analytically tractable.

When the likelihood is not of the form (2.24) the posterior of f does not exist in
closed form, and hence approximate Bayesian inference is necessary as described in
Section 1.2.1. This is not the only issue with GP models: the computations in (2.21)-
(2.22) have to deal with the inversion of k(X,X), which is of computational cost
O(N3).Computationally, this becomes intractable when N is large. In Section 2.1.3
we describe a framework that is computable also for large N . First, we will see how
we define GPs when the state space is high dimensional.

2.1.2 Multi-output processes

This section investigates Gaussian processes with state space RD, where D > 1.

Definition 2.4 f is a multi-output Gaussian process, if vec(f) is a Gaussian
process.

Here vec(·) denotes the operation that takes a matrix A of size N × D and returns
a column vector of size ND, by sequentially stacking the columns of A. So if F =
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(f1,f2, . . . ,fD), where fd is a N -dimensional column vector for 1 ≤ k ≤ D, then

vec(F ) =


f1

f2

...
fD

 ∼ N


µ1

µ2

...
µD

 ,K

 , (2.27)

where K is a ND ×ND symmetric and positive semi-definite matrix. In particular,
all the marginals fd are Gaussian processes.

The challenge with multi-output GPs is that it is not straightforward to have covariance
functions that reflect inter-dimensional dependencies between the outputs. Hence,
often K takes the trivial form

K =


K11 0 . . . 0

0 K22

...
...

. . .
...

0 . . . . . . KDD

 , (2.28)

which makes it easy to choose covariance function on each of the marginals fd, but
simultaneously this leaves the multi-output framework redundant as all outputs are
independent. The task is to encode these dependencies through a prior on the multi-
output GP f .

Coregionalization. Had we assumed all the marginals shared the same
covariance function in (2.28), we could have written it simply as

K = ID ⊗Kdd, (2.29)

where ⊗ denotes the Kronecker product. Now the inter-dimensional independence is
immediately clear from the identity matrix ID. One nice feature of Kronecker products
is, that the Kronecker product of two symmetric positive semi-definite matrices is again
a symmetric positive semi-definite matrix. Thus, if we swap ID in (2.29) with another
symmetric positive semi-definite matrix A, then K is still a covariance matrix. This
is known as the intrinsic coregionalization model (ICM) [Goovaerts et al., 1997] and
we write

K = A⊗ k(X,X), (2.30)

where we switched back to the notation for kernel matrices. We can see the covariance
of any two dimensions d and d∗ and any two points x and x∗

Cov
(
fd(x), fd∗(x

∗)
)

:= ad,d∗k(x,x∗), (2.31)

where ad,d∗ is the (d, d∗)-th entry in A. When the dimensionality D is large this is
not a particularly flexible model and commonly we add some flexibility by summing
kernels — recall that the sum of kernels is a kernel itself. A well-known model appears
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if we let all the corresponding D ×D-matrices be of rank 1. In particular, we define

K :=

ν∑
v=1

bvb
>
v ⊗ kv(X,X) =

ν∑
v=1

(bvb
>
v ⊗ IN )kv(X,X) (2.32)

=

ν∑
v=1

(bv ⊗ IN )kv(X,X)(b>v ⊗ IN ) (2.33)

= (B ⊗ IN )K̃(B> ⊗ IN ), (2.34)

where bv are the columns of B which is of size D×ν. K̃ is the Nν×Nν-block diagonal
matrix with ν block entries k1(X,X), . . . , kν(X,X). This is the covariance matrix
from the Semiparametric Latent Factor Model (SLFM) [Seeger et al., 2005], which is
the model defined

f1

f2

...
fD

 = B

u1

...
uν

 , where

u1

...
uν

 ∼ N

µ1

...
µν

 , K̃

 . (2.35)

The latent factors are then u1, . . . ,uν which are independent GPs with kernels
k1, . . . , kν . The semi-parametricity originates from the matrix B, which makes the D
GP outputs dependent.

2.1.3 Low-rank Variational Approximations

This section returns to the case where the output dimension is D = 1. We noted in
(2.21)-(2.22) that computing the posterior mean and covariance involves inverting the
kernel matrix k(X,X), which is of size N×N . This operation has complexity O(N3).
As a single computation, this is doable for moderate sized datasets, say 5000-10000
datapoints, on standard machinery. However, often we wish to compute derivatives
to optimise the hyperparameters of the kernel, thus we need to do this operation
many times until convergence of the gradient optimiser, and the overhead of O(N3)
is computationally intractable.

Inducing points. Since exact inference is unattainable, we must turn to
approximate methods. A key idea in this regard is inducing or auxiliary points. Let
f = f(X) as usual, but consider M inducing points u = (u1, u2, . . . , uM )> taking
values in R, like the GP f . Along with u are the inducing locations, which we will
denote Z = (z1,z2, . . . , zM )> that takes their values in the same space as X, say Rd.

One of the first ideas in this regime was the Deterministic Training Conditional
approximation (DTC) [Seeger et al., 2003], which use an approximate training
conditional

q(f |u) = N (α(X)>u, 0), (2.36)
where α(·)> = k(·,Z)k(Z,Z)−1. This of course, as the name also suggests, that
everything becomes deterministic when conditioned on u. From the computational
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viewpoint, we note that now we only need to invert k(Z,Z) which reduces the
operation to O(M3), where M << N . We can then obtain the posterior over u —
often necessary to assume u is a subset of the original training set f — and at test
points f∗ compute the GP

q(f∗|u) = N
(
α(x∗)>u, k(x∗,x∗)−α(x∗)>k(Z,Z)α(x∗)

)
. (2.37)

We can even marginalise the conditional u if the approximate posterior
q(u) = N (µ,Σ) (the prior on u is N (0, k(Z,Z)) as

q(f∗) = N
(
α(x∗)>µ, k(x∗,x∗)−α(x∗)>(k(Z,Z)−Σ)α(x∗)

)
. (2.38)

Snelson and Ghahramani [2006] build upon this by removing the deterministic
condition, but maintaining the conditioned on u, the marginals of f are independent.
They match the marginal variance Var(fi|u) with the exact marginal variances
k(xi,xi)−α(xi)

>k(Z,Z)α(xi). Thus, the approximate posterior is

q(f |u) =

N∏
i=1

N
(
α(xi)

>u, k(xi,xi)−α(xi)
>k(Z,Z)α(xi)

)
. (2.39)

and this is convenient since now u does not have to be a subset of f . This can be
obtained by performing exact inference in the modified GP with the kernel

k̃(xi,xj) = α(xi)
>k(Z,Z)α(xj) + δij

(
k(xi,xj)−α(xi)

>k(Z,Z)α(xj)
)
, (2.40)

where δij is Kronecker’s delta, i.e. δij = 1, if i = j, and 0 else.

The last option for approximating the true posterior with low-rank kernel matrices is
to tackle the problem in the framework of variational inference (introduced in
Section 1.2.1). In the context of GPs this was introduced by Titsias [2009a]. Thus we
approximate the true posterior p(f ,u|y) with an approximate distribution q(f ,u).
Here y denotes observations. The reason we never considered y in the two previous
methods is they only work when the likelihood is Gaussian, i.e. yi ∼ N (fi, ε). The
variational approach works for any choice of likelihood function. Recall from Section
1.2.1 that minimising KL between q(f ,u) and p(f ,u|y) is equivalent to maximising
the evidence lower bound

L(q) = Eq[log p(y|f ,u)]−KL(q(f ,u)‖p(f ,u)). (2.41)

If we choose the approximate posterior to take the form

q(f ,u) = p(f |u)q(u), (2.42)

where q(u) = N (m,S), m is a free-form parametric vector of length M , and S is a
symmetric and positive semi-definite matrix of size M ×M — also parametric.

In this setup, the evidence lower bound reduces to

L(q) = Eq(f)[log p(y|f)]−KL(q(u)‖p(u)). (2.43)
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Moreover, the approximate posterior where we marginalise the inducing points u takes
the form

q(f∗) = N
(
α(x∗)>m, k(x∗,x∗)−α(x∗)>(k(Z,Z)− S)α(x∗)

)
, (2.44)

for f∗ = f(x∗).

2.2 Wishart Processes

The Wishart distribution generalises the univariate χ2-distribution to symmetric,
positive semi-definite matrices. We can recall the χ2 is built from squared unit
Gaussians

σ2 :=

ν∑
v=1

U2
v , (2.45)

where Uv ∼ N (0, 1) and all independent. Then we say σ2 ∼ χ2(ν) — in words, σ2

is χ2-distributed with ν degrees of freedom. The extension to matrices relies on the
same principles, we change the univariate Gaussians to multivariate, that is

Σ :=

ν∑
v=1

UvU
>
v , (2.46)

where now Uv are independent and distributed as N (0, ID). We say that Σ is Wishart
distribution with ν degrees of freedom and scale matrix ID. The scale matrix is also
the expectation, i.e. E[Σ] = ID. In this view we can introduce some parametric
matrices to change this expectation, we can write

Σ :=

ν∑
v=1

LUvU
>
v L

T , (2.47)

where LL> is a symmetric positive semi-definite D×D matrix. Now the scale matrix
is LL>, and for short hand notation we write Σ ∼ WD(LL>, ν). Σ is degenerate if
ν < D.

It is on this foundation that we define Wishart processes. This is near-identical to the
definition by Wilson and Ghahramani [2010].

Definition 2.5 Let L be a D×D matrix, such that LL> is positive semi-definite
and fd,v ∼ GP

(
0, kd,v(x,x′)

)
independently for every d = 1, . . . , D and v = 1 . . . , ν,

where ν ≥ D. Then if

Σ(x) = L

(
ν∑
v=1

fv(x)f>v (x)

)
L> (2.48)
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Figure 2.1: Visualisation of the Wishart process. The input dimensionality,
d, is 2, and varies along the coordinate system indicated by the
black arrows. The output is a 2 × 2 symmetric matrix, which we
can visualise as ellipses. The diagonal elements are represented by
the ellipses length along the coordinates system. The off-diagonal
element is the rotation of the ellipse. We can see how these change
over the coordinate system.

is Wishart distributed for any marginal x, and if for any finite collection of pointsX =
{xi}Ni=1 the joint distribution Σ(X) is determined through the covariance functions
kd,v, then Σ(·) is a Wishart process. We will write

Σ ∼ WPD(LL>, ν, κ), (2.49)

where κ is the collection of covariance functions {kd,v}.

Wilson and Ghahramani [2010] call this theGeneralised Wishart Process as it is defined
for general kernel function as opposed to the construction from Bru [1991].

Like the coreginalization from Section 2.1.2 this construction is semi-parametric —
at least when the scale matrix is not the identity. Often, we change the notation
and write Σ(x) = LFF>L>, where F = (f1,f2, . . . ,fν), i.e. the matrix with
all independent entries fd,v. It is this construction that makes it easy to perform
(approximate) Bayesian inference, as it reduces to performing the inference in the
underlying GPs. Of course, L also needs to be inferred, but we will not consider priors
over it.

In view of this, there is a lingual caveat in this framework. If we say that Σ has
a Wishart process prior as determined by Definition 2.5, then the posterior process
need not be marginally Wishart. Notice the condition that the underlying GPs have
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constant mean function 0, is not fulfilled by the posterior GPs. Retrospectively, a
more suitable name for this family of processes would have been non-central Wishart
processes. We remark however that we still refer to posterior processes as Wishart
processes — a Wishart process is a process whose prior is a Wishart process.

Figure 2.1 visualise how we can think of Wishart processes over the index set R2. The
outputs are 2 × 2-matrices which we can illustrate by ellipses. The rotation of the
ellipses corresponds to the correlation (i.e. Σ12), and the marginal variances — the
diagonal of Σ — are visualised as the ‘diameter’ of the ellipse along the D coordinate
axes. We see how the ellipses can change for different inputs.

We end this section of by introducing a little trick from Wishart distributions, that
also applies to Wishart processes. Let Σ follow a ρ-Wishart distribution with ν degrees
of freedom and scale matrix LL>, and let B be a D × ρ-matrix of full rank. Then
BΣB> ∼ WD(BLL>B>, ν). We will use this feature to scale Wishart processes to
high dimensions, thus we will let ρ < D. We remark here the resemblance to Semi-
parametric Latent Factor Model as introduced in (2.35). It is a ‘squared’ SLFM, since

Σ(x) = BLFF>L>B>, (2.50)
where F is the ρν latent factors. This is computationally useful, as we only have to
perform inference1 in ρ2 GPs, as opposed to D2. The cost of this is that the resulting
Wishart process is degenerate.

2.3 Stochastic Differential Equations

Definition 2.6 (Brownian Motion) Let σ2 > 0. A (univariate) stochastic
process, B : [0,∞)→ R, is called a Brownian motion if it satisfies

(i) For any 0 ≤ s1 < t1 ≤ s2 < t2, we have B(t1 − s1) is independent of B(t2 − s2).
(ii) B(t− s) ∼ N

(
0, σ2(t− s)

)
, for any 0 ≤ s < t.

(iii) t 7→ B(t) is almost surely continuous.

Remark. The Brownian motion (BM) is a Gaussian process with constant mean
function 0 and covariance function k(s, t) = σ2 min(s, t). Further, as a consequence of
(ii) and (iii) we always have B(0) = 0 almost surely. In the literature, the Brownian
motion is often also called the Wiener process. The BM is nowhere differentiable.

The stochastic differential equations (SDE) [Särkkä and Solin, 2019, Kloeden and
Platen, 2013] in this section are of the form

x(t) = x(0) +

∫ t

0

a(x(s))ds+

∫ t

0

√
b(x(s))dB(s), (2.51)

1We here always assume the degrees of freedom is equal to the ‘new’ output dimension ρ.
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where a : R → R is called the drift function, b : R → R is called the diffusion. B
is a Brownian motion. In the literature, the parameter σ2 of the BM is sometimes
referred to as the diffusion, but we remark this can be accounted for in b. A stochastic
process that satisfies (2.51) is said to be an Itô process, named after Kiyoshi Itô — a
fundamental figure in the development of stochastic calculus.

They are a continuous time version of state-space models (remember e.g. the random
walk from Example 2.1), that are generated like2

x0 = x, for some x ∈ R, (2.52)
xt = xt−1 + a(xt−1) + b(xt−1)εt, for t ∈ N (2.53)
yt = g(xt), for t ∈ N (2.54)

where εt is some random noise — we will assume it unit Gaussian. Here yt denotes
temporal observations and xt is a latent state. The dynamics of xt are as given in
(2.53). When g is the identity mapping we often call it an auto-regressive model.

We are interested in these types of model for high-dimensional state spaces. We can
define a random walk type model on a (multi-output) Gaussian field f ∼ GP(µ,Σ)

xt+∆ = xt + µ(xt)∆ +
√

Σ(xt)∆N , N ∼ N (0, ID), (2.55)

for any t > 0 and any ∆ > 0. Then the state xT is given like

xT = x0 +
∑ζ−1

t=0

(
µ(xt)∆ +

√
Σ(xt)∆N

)
. (2.56)

where ∆ := T/ζ. If we let ζ →∞ we obtain the SDE

xT − x0 =

∫ T

0

µ(xt)dt+

∫ T

0

√
Σ(xt)dBt, (2.57)

where Bt is the multivariate BM with increments B(t− s) ∼ N (0, (t− s)ID).

Now the task is to infer the posterior field f based on its prior and observations,
potentially multivariate, under the model assumption (2.54).

2.4 Continuous-time models in Machine
Learning

Differential equations, in general, have recently attracted vast interest in machine
learning [Haber and Ruthotto, 2017, E, 2017, Chen et al., 2018]. The connection to
time series modelling is evident, however the recent interest stems from their
connection to deep neural networks. ResNets [He et al., 2016] is a family of network

2We now write xt = x(t) for easier notation
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x1 x2 . . . xt

y1 y2 yt

Figure 2.2: The standard state-space model. The temporal dependence is
modelled as a Markov chain in the latent state space xt, and the
observed values yt are independent condtioned on xt.

architectures that allow stable training of very deep networks. In words, the central
idea is not to overwrite what previous layers have learned, by having the layers in the
network form residual blocks. This means that layers lt of the network take the form

lt = lt−1 + f(lt, θt), (2.58)

where f is some transformation parametrized with θt. These building blocks are more
robust to the vanishing gradient problem, as we could ‘turn off’ the transformations
f ≈ 0 and maintaining the information from earlier layers.

These blocks in (2.58) resembles the structure in (2.55) — there we just added some
random noise in each transformation. One could then ask: what if we took infinitely
many infinitely small steps or transformations? In other words, we are envisioning
(2.58) as a coarse Euler-discretization [Kloeden and Platen, 2013] of an ODE

∂lt
∂t

= f(lt, θt, t). (2.59)

Chen et al. [2018] introduced a method to optimise this ODE without backpropagating
through the discretization.

For regression tasks, the generative model can then be written, for non-temporal data
D = {xi, yi}Ni=1, like

x0 = xi, (2.60)

xT = x0 +

∫ T

0

f(lt, θt, t)dt, (2.61)

yi ∼ N (g(xT ), ε), (2.62)

for some predefined T > 0 and any i = 1, . . . , N . This implies, that what for usual
neural networks is referred to as depth, the discrete number of hidden layers, is now a
continuous quantity T .

We will focus on dynamics with noise in them, i.e. SDEs. The solver we shall use is
Euler-Maruyama’s method, the SDE-eqivalent to Euler’s discretization [Kloeden and
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Platen, 2013]. This method finely discretizes the interval [0, T ] in a mesh 0 = t0 <
t1 < . . . < tl = T , and pushes xti along the vector field

xti+1 = xti + µ(xti)∆i +
√

Σ(xti)∆iN , (2.63)

where N ∼ N (0, ID) and ∆i = ti+1 − ti. We ‘generalise’ the Neural ODE model
to SDEs; this has been studied in Twomey et al. [2019], Tzen and Raginsky [2019],
Liu et al. [2019], Li et al. [2020], and the work by Andreas and Kandemir [2019], who
model the drift and diffusion of an SDE with Bayesian neural networks.

Differential Gaussian Process Flows. The deep learning equivalent in
the GP literature is deep Gaussian processes. This notion covers multiple
constructions [Dunlop et al., 2018], but here a deep Gaussian process (DGP) is a
sequence of conditional GPs such that

fl|fl−1 ∼ GP
(
µl(fl−1), kl(fl−1, fl−1)

)
, (2.64)

where l0 is the input data. In words, the outputs of one GP are the inputs of the next.
This construction has been studied by Damianou and Lawrence [2013], Cutajar et al.
[2017], Dai et al. [2015] and efficient inference was given by Salimbeni and Deisenroth
[2017] to scale these models to large datasets.

While neural nets have vanishing gradient problems, these GP compositions have a
more fundamental problem. For most kernels the intermediate GPs are not bijective,
which means two different inputs is likely to collapse to the same input for very deep
models. To overcome this issue Salimbeni and Deisenroth [2017] propose to have the
prior mean of each layer be the identity — in contrast to the usual constant mean.
Another solution was proposed by Duvenaud et al. [2014], where each layer is a GP
with input from the previous layer and l0 concatenated.

Hegde et al. [2019] proposed the ‘infinite’ limit of DGPs that views the sequence
of GPs as a coarse Euler-Maruyama discretization. They let the SDE in (2.63) be
parametrized with the mean function an covariance matrix of one Gaussian field. For
completion we present the graphical and generative model here, but most detail are
covered in the next section; the graphical model is given in Figure 2.3 and generative
model reads as

x0 = xi, (2.65)

xT = x0 +

∫ T

0

µ(xt)dt+

∫ T

0

√
K(xt)dBt, (2.66)

yi ∼ N (g(xT ), ε), (2.67)

where K(x) is the ND × ND covariance matrix of the posterior of the Gaussian
field f . µ is the posterior mean function. The same type of model was studied by
Ustyuzhaninov et al. [2020].
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x0 xt xT

f t

g y
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Figure 2.3: The graphical model of Hegde et al. [2019].

2.5 Diffusions with a Wishart prior

In this section, we will introduce the model presented by Jørgensen, Deisenroth, and
Salimbeni [2020]. The model is inspired by the model in Hegde et al. [2019], which was
briefly summarised in the previous section. A caveat in the model there is the diffusion
term. In their experiments they let theK(xt) in (2.66) be a ND×ND diagonal matrix
— this means that all points move independently also among output dimensions. In
this way, (2.66) could have been written as ND independent SDEs. From a regression
perspective this is not a big issue, but it is not intuitive for a dynamical system. In
temporal processes, often two (or many) variables evolve in a correlated manner, and
it is this kind of behaviour we aim to capture in this section. In temporal modelling
these models have been studied and used intensively in many fields. Among them is
the award-winning ARCH model [Engle, 1982], and it’s successors, which learn the
diffusion in an auto-regressive way.

Hegde et al. [2019] only focus on regression and classification, and achieve positive
results compared to other DGP models. It is still interesting to try to understand
if the ‘uncertainty’ propagated through an SDE is comparable to the uncertainty of
posterior GPs, i.e. k(xi,xi). From a regression viewpoint, the diffusion can be seen
as a regulariser, and it is interesting if this can also be learned in a Bayesian manner.

The model we present consists of a Gaussian field f : RD × [0, T ] → RD and a GP
g : RD → Rη, whose priors are

f ∼ GP(0, kf (·, ·)⊗ ID), g ∼ GP(0, kg(·, ·)⊗ Iη). (2.68)

We also consider a Wishart process Σ : RD × [0, T ] → G, where G denotes the set of
symmetric, positive semi-definite D ×D matrices.

Remark. For easier notation we will write kD(a, b) := k(a, b) ⊗ ID. That is, k(a, b)
returns a kernel matrix of dimension number of rows in a times the number of rows in
b. This corresponds to the assumption of independence between output dimensions.

Before detailing the model, we present the overview here with a graphical model (see
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x0 xt xT

Σt f t

g y

uΣ uf

ug

(a) Graphical model based on Eq. (2.73)

· · ·

· · ·

· · ·xs := xt + f t

f t = µ(xt)(s− t) +
√

Σ(xt)N

xt xs

µ(·)

Σ(·)

f t

(b) Cycle from (a) and how it moves along the time-axis.

Figure 2.4: (a) Graphical model based on the factorisation in Eq. (2.73); (b)
The cycle from (a), which represents the field f , and how it moves
along the time-axis. Here N ∼ N (0, (s − t)I). Blue represents
the flow/SDE, square nodes are variational variables.

Figure 2.4) and a generative model that reads

x0 = xi, (2.69)

Σ ∼ WPD(LL>, ν, κ), f(·)|Σ ∼ GP
(
µ(·),Σ(·)

)
, (2.70)

xT = x0 +

∫ T

0

µ(xt)dt+

∫ T

0

√
Σ(xt)dBt, (2.71)

yi ∼ N (g(xT ),AΣ(xt)A
> + Λ), (2.72)

where the fields in (2.70) denotes the prior fields. Next, we will show how to
marginalise these. Here A is a η × D parametric matrix and Λ is a diagonal η × η
parametric matrix. If η = 1, then usually A = 0 and the model reduces to
yi ∼ N (g(xT ), ε) for some ε > 0.

This construction is a continuous-time deep learning model capable of propagating
noise in high-dimensions. In words, the diffusion coefficient Σ(xt) of the SDE has
Wishart process prior. The model we present factorises as

p(y,Θ) =p(y|g)p(g|xT ,ug)p(ug)p(xT |f)p(f |Σ,uf )p(uf )p(Σ|uΣ)p(uΣ), (2.73)

where Θ :=
{
g,ug,xT ,f ,uf ,Σ,uΣ

}
denotes the variables to be marginalised. We
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assume data D =
{

(xi,yi)
}N
i=1

is i.i.d. given the process, such that

p(y|g) =

N∏
i=1

p(yi|gi). (2.74)

We approximate the posterior of g with the variational distribution

q(gi) =

∫
p(gi|ug)q(ug)dug = N (µ̃g(xi), k̃g(xi,xi)), (2.75)

where

µ̃g(xi) = α>g (xi)vec(mg), (2.76)

k̃g(xi,xi) = kηg (xi,xi)−α>g (xi)
(
kηg (Zg,Zg)− Sg

)
αg(xi), (2.77)

where αg(xi) := kηg (xi,Zg)k
η
g (Zg,Zg)

−1. Here mg is an M × η matrix, and Sg is an
Mη ×Mη-matrix, constructed as η different M ×M -matrices Sg = {Sj}ηj .

The inputs to g are the state distribution xT of an SDE at a fixed time point T ≥ 0.
We construct this SDE from the viewpoint of a random field. The SDE is

xT − x0 =

∫ T

0

µ(xt)dt+

∫ T

0

√
Σ(xt)dBt, (2.78)

where B is a Brownian motion. Thus xt is an Itô process, which we numerically
can solve by the Euler-Maruyama method. We will see that by a particular choice of
variational distribution that Σ(xt) will be the realisation of a Wishart process. But
first we consider no prior over the diffusion, as in Hegde et al. [2019].

The coefficients in (2.78) are determined as the mean and covariance of a Gaussian field
f . The posterior of f is approximated with a Gaussian q(f i) = N (µ̃f (xi), k̃f (xi,xi)),
where

µ̃f (xi) =α>f (xi)vec(mf ), (2.79)

k̃f (xi,xi) =kDf (xi,xi)−α>f (xi)
(
kDf (Zf ,Zf )− Sf

)
αf (xi), (2.80)

and αf (·) = kDf (·,Zf )kDf (Zf ,Zf )−1.

Summarising, we have a dynamic propagating a data point x0 through the SDE (2.78)
to xT , and further through the GP g, to make a prediction. However, each coordinate
of x move independently, by construction of the prior f . By introducing Wishart
processes, this assumption is eliminated.

Wishart Diffusions. Still considering the Gaussian field f , whose posterior is
approximated by the variational distribution q(f). Remaining within the Bayesian
variational framework, we define a hierarchical model:

p(f) =

∫
p(f |uf ,Σ)p(uf )p(Σ|uΣ)p(uΣ)d{Σ,uf ,uΣ}, (2.81)
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where Σ is a Wishart process. Specifically, its prior is

Σ ∼ WPD(LL>, ν, kf ). (2.82)

Thus, any marginal Σ(xt) = LJJ>L> is Wishart, and we let J be the D × ν-
matrix with all independent entries jd,v(xt) drawn from GPs that share the same
prior jd,v(·) ∼ GP(0, kf (·, ·)). To approximate the posterior of the Wishart process we
choose the variational distribution

q(J ,uΣ) = q(J |uΣ)q(uΣ) := p(J |uΣ)q(uΣ), (2.83)

where q(uΣ) =
∏D
d=1

∏ν
v=1N (mΣ

d,v,S
Σ
d,v). Here, mΣ

d,v is M×1 and SΣ
d,v is M×M for

each pair {d, v}.

The same kernel is used for the Wishart process as is used for the random field f , that
is: only one kernel controls the vector field f . The posterior of Σ is defined through
the posterior of J . Given our choice of kernel, this approximate posterior is identical
to Eqs. (2.79)-(2.80), only changing the variational parameters tomΣ and SΣ, and D
changes to Dν.

Lastly, we define p(f |Σ,uf ). Since Σ(xt) is a D×D-matrix we can write

p
(
f |{Σ(xi)}Ni=1,uf

)
= N

(
µ̃(X), k̃Σ

f (X,X)
)
, (2.84)

µ̃(xi) = α>f (xi)vec(uf ), (2.85)

k̃Σ
f (xi,xj) =

(
Σ(xi)− hij

)
δij , (2.86)

where hij = αf (xi)
>kDf (Zf ,Zf )αf (xj) and δij is Kronecker’s delta. Notice this,

conditioned on the Wishart process, constitutes a FITC-type model [Snelson and
Ghahramani, 2006, Quiñonero Candela and Rasmussen, 2005].

This goes beyond the assumption of independent output dimensions, and instead makes
the model capture the inter-dimensional dependence structure through the Wishart
process Σ. This structure shall also be optimised in the variational inference setup.
The posterior of conditional f is approximated by

q(f ,uf |{Σ(xi)}Ni=1) = q(f |{Σ(xi)}Ni=1,uf )q(uf )

= p(f |{Σ(xi)}Ni=1,uf )q(uf ),
(2.87)

where q(uf ) := N (mf , k
D
f (Zf ,Zf )). At first, this might seem restrictive, but

covariance estimation is already in Σ and the variational approximation is the simple
expression

q(f |{Σ(xi)}Ni=1) =

N∏
i=1

N
(
α>f (xi)mf ,Σ(xi)

)
. (2.88)
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The marginalisation can then be computed with Jensen’s inequality

log p(y) = log

∫
p(y,Θ)dΘ ≥

∫
log
(p(y,Θ)

q(Θ)

)
q(Θ)dΘ

=

∫
log p(y|g)q

(
g|Θ \ {g}

)
dΘ−KL

(
q(ug)‖p(ug)

)
−KL

(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
=Eq(g)[log p(y|g)]−KL

(
q(ug)‖p(ug)

)
(2.89)

−KL
(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
.

The right-hand side in (2.89) is the evidence lower bound. The first term, the
expectation, is analytically intractable, due to q(g) being non-conjugate to the
likelihood. Therefore, we approximate it with Monte Carlo methods or
Gauss-Hermite quadrature [Hensman et al., 2015]. Using Monte Carlo, a few samples
often suffice for reliable inference [Salimans and Knowles, 2013].

The KL-terms in (2.89) can be computed analytically as they all involve multivariate
Gaussians. One of them is special — the one regarding uf . Since both q(uf ) and
p(uf ) have the same covariance matrix it reduces to

KL
(
q(uf )‖p(uf )

)
=

1

2

∑D

d=1
m>fdk

D
f (Zf ,Zf )−1mfd , (2.90)

since the kernel and inducing locations are shared.

Outlining the model, we have initial inputs x0 := x that are warped through an SDE
with drift function µ and diffusion Σ. The value of this SDE, at some given time T ,
is then used as input to a GP g, i.e. g(xT ) predicts targets y(x). We note again that
y can be both temporal and non-temporal. The model is inferred by maximising the
ELBO (2.89).

Scaling to high-dimensional data. In Jørgensen, Deisenroth, and
Salimbeni [2020] a method to overcome the computational burden if D is large is
presented: a low-rank approximation on the dimensionality-axis. Recall, if
Σρ ∼ WPρ(I, ν, κ), then ΣD := LΣρL

> ∼ WPD(LL>, ν, κ). These matrices are of
rank ρ � D. The computational overhead is reduced to O(ρ2NM2 + Dρ2) if ν = ρ.
This is compared with O(DνNM2 + DνD) without the approximation. This same
structure was introduced by Heaukulani and van der Wilk [2019] for time-series
modelling; and it reminisces the structure of Semi-parametric Latent Factor Models
(SLFM) [Seeger et al., 2005], as also discussed in Section 2.1.2.

In this approximation, we need only to sample
√

ΣD = LJ , where J is a ρ×ν matrix,
with GP values according to the approximate posterior q(J), with D replaced by ρ.
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2.6 Evaluation

This section evaluates what the Wishart diffusions bring to the table. In this respect,
we will revisit the dataset studied in Jørgensen, Deisenroth, and Salimbeni [2020].
The dataset measures Air Quality in Beijing, China [Zhang et al., 2017]. To be precise
it measures 10 features: the concentration of PM2.5, PM10, SO2, NO2, CO, O3.
Further, it observes the temperature and dew point temperature, air pressure and
amount of precipitation. These measurements are made hourly for a period of three
years (2014-2016). The measurements were done at three locations around the city of
Beijing: Tiantan, Dongsi and Shunyi.

The hypothesis in such a dataset would be that there is (at least) correlations to be
found in the measurements across the different locations, as the temperature is with
high probability the same at these geographically close locations. To this end, we
would speculate the Wishart diffusion might pick up on these correlations.

In Jørgensen, Deisenroth, and Salimbeni [2020] three models were compared, but we
shall focus on the two most interesting here. Naturally, the first is the Wishart diffusion
SDE presented in the previous sections. For comparison, we compare to an SDE model
where the diffusion is diagonal, but the drift is parametrized like it is for the model
above. Thus, the ‘control’ model has dynamics

xt = xs + µ(xs)(t− s) +
√

Λ(t− s)εt, ε ∼ N (0, I). (2.91)

In the paper it was verified that the Wishart model forecasts significantly better than
its diagonal counterpart. Here we will verify what is learned in the dynamical model.
To this end, we have visualised the dynamics of some features (CO, NO2 and
temperature) in Figure 2.5. The lines here indicate how the forecasting evolves for
the measurements at two different locations. At first, we may note how the lines for
the Wishart diffusions are aligned along the diagonal indicating that when, say CO,
rises in Shunyi it is likely to do as well in Dongsi. This aligns with the initial
hypothesis, and the signal is especially clear for the temperature measurements,
which likely is less affected by local factors such as traffic. Note that there are no
axes in the plots, as all measurements have in standardised — for this evaluation we
are interested in the dynamics only.

For experiments on regression tasks we refer to [Jørgensen, Deisenroth, and Salimbeni,
2020], which is also appended (Paper B) this thesis.

Future directions

The contributing method we displayed in this chapter is sample intensive, by which we
mean that sampling is the computational bottleneck of the approach. Recently, Wilson
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et al. [2020] introduced an approach to which such systems can be sampled in linear
time (in T ), which is a significant speed-up compared to the many recomputations
we did for the code in the paper. This computational speed-up comes with only a
negligible approximation error.

More fundamentally, it would be interesting to bridge the gap between neural-ODEs
and SDEs, such as the Bayesian one presented here. We hypothesise one direction this
can be achieved: replacing the Brownian motion with a fractional Brownian motion can
generate sample paths that are smoother contrasted to the rugged Brownian motion.
On the contrary, they can potentially be even more rugged; which could happen if
more regularisation is needed. The ‘ruggedness’ of the sample paths would be decided
by the Hurst parameter [Mandelbrot and Ness, 1968]. We know that the fractional
Brownian motion is the Gaussian process with covariance function given by

k(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H), (2.92)

where H is the Hurst parameter. We notice that H = 1/2 would yield the Brownian
motion as described in Definition 2.6. Further, we note that substituting the Brownian
motion with a fractional Brownian motion would not alter with the existence of the
Ito integrals.

As the last point, we will mention the influence of T , when the intention is regression
or classification. It was pointed out in Hegde et al. [2019] that large T generally yields
better results. However, with a proper choice of prior distribution over T , we conjecture
it would be possible to treat T is a ‘regular’ parameter, sooner than a hyperparameter.
Postulated examples of such priors could be the exponential or Weibull distributions.
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Figure 2.5: Visualisations of the dynamics of both Wishart diffusions and the
diagonal setting. We observe Wishart dynamics are more focused
around the diagonal, indicating correlated variables.



Chapter 3

Random Manifolds and
Latent Variables

At the end of this chapter, I will have presented a method to learn a random
Riemannian manifold and its associated metric. This will be done by inferring a
Gaussian field, that should mimic some metric space we are given. This differs from
previous methods by being both generative and based on dissimilarity data, i.e. we
do not need observations to lie in a defined coordinate space. The contributions of
this chapter is based on the article Isometric Gaussian Process Latent Variable Model
for Dissimilarity Data [Jørgensen and Hauberg, 2020].

To this end, I will begin by introducing the fundamentals of Riemannian geometry.
Manifolds, in general, are abstract spaces, and I will go over how the machine
learning literature have dealt with learning them. This will provide intuition of how
our proposed method is cherry-picking some of the best ideas in this field and
combining them in a novel way. We begin by covering standard topology and define
exactly the types of manifold we will eventually use. We further present a beginner’s
guide to persistent homology, which is a data-centric approach to topology.

Then we will argue that uncertainty serves as a ‘shadow’-topology, in the sense that it
can inform us where to construct our manifolds. This paves the way back into Gaussian
processes and the Gaussian process latent variable model (GPLVM) [Lawrence, 2005].
To study geometry on GPs we cover some notions on GP arc lengths. The final
contribution includes all these aspects. But first — topology.
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3.1 A Primer on Topology and Geometry

In this section, we will cover the mathematical foundation on topology and differential
geometry. We begin by defining a topological space, which is the bedrock of all that
is to come.

Definition 3.1 A topological space (X , τ) is a set X and τ is a family of subsets
satisfying:

(i) ∅ ∈ τ ,
(ii) X ∈ τ ,
(iii) For any finite collection U1, . . . , UN of sets from τ , then

⋂N
i=1 Ui ∈ τ ,

(iv) For any collection Uα, α ∈ I, then
⋃
α∈I Uα ∈ τ .

If τ satisfies (i)-(iv), we call it a topology.

Remark. The topology of RD is the family of open sets.

Colloquially speaking, a topological space is one that is invariant under simple
continuous transformations of the space. This is why topologists are said to be
incapable of distinguishing coffee mugs from donuts. These transformations are
called homeomorphisms.

Definition 3.2 We say that a function f : X → Y between two topological spaces
(X , τX) and (Y, τY ) is a homeomorphism if it satisfies:

(i) f is a bijection (one-to-one mapping),

(ii) f is continuous,

(iii) f−1 is continuous.

If f is a homeomorphism, we say that X and Y are homeomorphic.

A pathological example of a homeomorphism is given in Figure 3.1, where the sphere
can continuously ‘morph’ into the box, but is not able to split itself into two boxes.
Equivalently, the sphere and the box are homeomorphic, but the sphere and two
disjoint boxes are not.

With this understanding we can define what a manifold is.

Definition 3.3 A (d-)manifold M is a topological space, such that for any point
x ∈ M, there exist a neighbourhood Ux ∈ M which is homeomorphic to an open
subset of Rd.
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Homeomorphic

Not homeomorphic

Figure 3.1: A simple example of two sets that are homeomorphic and not
homeomorphic. We can continuously warp the sphere into a box
and reversely, but we can not warp a sphere into two boxes without
tearing.

Remark. A set Ux ⊂M is called a neighbourhood of x, if there exist O ∈ τ such that
x ∈ O ⊂M.

So everywhere, very locally, the manifold is topologically equivalent to Euclidean space.
Concretezing this, the earth appears, from our viewpoint, flat and Euclidean, but once
we zoom out we see the curvature and ultimately spherical manifold structure.

For our purpose, we will also care about metrics on manifolds. In general, when we
have a metric space (X , d), where d denotes the metric, then we have a canonical
topology on X .

Example 3.1 Consider the Euclidean metric ‖ · ‖ on RD. Define the family A of
all open balls

A := {Br(x)
∣∣ x ∈ RD and r > 0} where Br(x) = {y ∈ RD

∣∣ ‖y − x‖ < r},
(3.1)

then the topology generated with A as an open basis is the topology on RD. A family
A is an open basis of a topology τ , if any open set can be written as a union of sets in
A. This is exactly the case of A defined above and the topology τ on RD. We say that
τ was generated by the metric d.

A topological space X with τ generated from a metric, as above, is metrizable. This
implies that we can always generate a topology from a metric, but the other way
is not ensured. Urysohn’s metrization theorem provides sufficient conditions on the
topological space to be metrizable.
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We avoid this existential question by considering topological spaces generated from
metrics. In particular, we consider Riemannian manifolds that have additional
constraints on the manifold, but supplies us with a well-defined metric.

Definition 3.4 A Riemannian manifoldM is a smooth q-manifold equipped with
an inner product

〈·, ·〉x : TxM×TxM→ R, x ∈M, (3.2)

that is smooth in x. Here TxM denotes the tangent space ofM evaluated at x.

The length of a curve. The inner product construction of the Riemannian
manifold allows us to compute curve-lengths on it. Let c : [0, 1] → M be a smooth
curve on the manifold. Then the curve-length s is given by

s =

∫ 1

0

‖ċ(t)‖c(t)dt, where ‖ · ‖x =
√
〈·, ·〉x. (3.3)

Having this tool at hand we can define a metric onM by

dM(xi,xj) = inf
{
s
∣∣c ∈ C1([0, 1],M) and c(0) = xi and c(1) = xj

}
, (3.4)

and we call the curve c a geodesic between xi and xj , if dM(xi,xj) =
∫ 1

0
‖ċ(t)‖dt.

3.2 Manifold and Metric Learning

In this section, we will look at topology, manifolds and metrics from a data-centric
viewpoint. The machine learning community has some of its most fundamental ideas
— nearest-neighbour search, linkage clustering and dimensionality reduction etc. —
rooted in abstract ideas of topology and geometry.

Some of the most popular methods for non-linear dimensionality reduction are
deterministic in their nature. This is not an issue if the end goal is visualisation of
high-dimensional datasets. However, if the model — or representation — is part of a
decision-making system it can be crucial to have calibrated uncertainty
quantification. This section also initiates a discussion on the relationship between
uncertainty and geometry.

3.2.1 Data manifolds

In machine learning, our information is usually restricted to N observations {xi}Ni=1

from an unknown distribution p(x). These observations are residing in some space –
usually RD. The data manifold is the restricted ‘topological space’ where the data
lives. This aligns with a common hypothesis in the machine learning community.
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Figure 3.2: The manifold assumption visualised: there exist a manifold (red),
that lies close to the datapoints (black). This manifold is of smaller
dimension, than the space the data is embedded in. Here the data
is in 2 dimensions, while the manifold is 1-dimensional.

The manifold assumption hypothesizes that data residing in high-dimensional spaces
tend to lie on, or close to, a manifold of lower dimensionality. This implies that the data
manifold is locally homeomorphic to a low-dimensional Euclidean space. In Figure 3.2
this phenomenon is visualised with black dots as the observation in R2. We see, in
both cases, that observations lie near a 1-manifold represented by the red line.

If the manifold assumption applies to high dimensions, what is the dimensionality
of the data manifold? In general, there is no answer to this question. Johnson-
Lindenstrauss’ lemma, however, provide some formalism on the manifold assumption
[Dasgupta and Gupta, 2003]. They state for some ε ∈ (0, 1) and N points in RD, there
exists a linear mapping f : RD → Rq such that

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2 ∀i, j ≤ N, (3.5)

where q > 8 log(N)/ε2. Intuitively, this means that in very high dimensional spaces
we can preserve Euclidean distances by randomly projecting to a significantly smaller
Euclidean subspace. However, if the mapping is not linear, consider for example the
right-hand side of Figure 3.2, things are not as straightforward.

From an alternative viewpoint, when we move around on the data manifold, we will
always be close to the data. This illustrates, why the red line has to curve on right-hand
side of Figure 3.2. If the two endpoints of the red line had been linearly interpolated,
then we would have moved through a region not close to the data, hence we moved
off the data manifold.

Data Topology. As a first sanity check, one would be interested in topological
invariants of the data manifolds, such as connectedness and holes. This gives some
information about where we can not move on the data manifold, as we should not
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move between components — in other words, clusters — or through holes. We wish
to study the homological features of the space X , through samples {xi}Ni=1 that are
near X .

Definition 3.5 (Vietoris-Rips complex) Let (X , d) be a metric space.
V R(X , ε) is a Vietoris-Rips complex with vertex set X if any finite set of points
{x0, x1, . . . , xk} from the vertex set satisfies

{x0, x1, . . . , xk} is a k-simplex ⇐⇒ d(xi, xj) ≤ ε ∀i, j ∈ {1, . . . , k}. (3.6)

A k-simplex can be thought of as a higher-dimensional graph, i.e. a 1-simplex is graph.
In general, a k-simplex is the convex hull of k + 1 vertices. An abstract simplicial
complex V is a finite set of simplices, that is closed under taking subsets. That is, for
any V ⊂ V and any W ⊂ V , then W ⊂ V.

The reason for introducing simplicial complexes is because their homology is easily
computed. For this thesis we will not show how this is done, but focus on the why.
For more on the exact computation we refer to Carlsson [2009].

3.2.2 Persistent Homology

Homology is an algebraic topology concept describing topological invariants. In this
sense, it is an algebraic treatment of whether two topological space are homeomorphic
or not. The key idea is that homology studies ‘dimensional’ holes of the topological
spaces. A 0-dimensional hole is a ‘gap’ between two vertices, thus if there are no 0-
dimensional holes the vertex is connected. A 1-dimensional hole, or a circular hole, can
be thought of a loop on the simplex; while 2-dimensional holes are ‘void’-like — think
the inside of a sphere. This generalizes to any dimensions, but are quite abstract
quantities. For a complicated V the numbers β0(V), β1(V), . . ., known as the Betti
numbers, count the number of holes in each dimension. This sequence of numbers
describe topological invariants.

Figure 3.3 shows how the Vietoris-Rips complex is build from the closed balls with
radii ε. From the point set on the left, we cover it with closed balls of some radii. If two
points lie within each other’s coverings, we connect them to a 1-simplex. Had three
points shared coverings in a similar way, they would have connected to a 2-simplex,
and so forth. On the right in Figure 3.3 we see the resulting complex, which has a
different topology than ‘trivial’ topology of the point cloud on the left. Naturally, this
complex is sensitive to the threshold parameter ε.

The most reliable homological information is obtained by not analysing a fixed value
of ε. Instead, we analyse a range of different complexes to review the homological
information for multiple values of ε. It is from this idea, that we talk about persistent
homology — we wish to obtain a signal in the topology and leave out the noise, that
stems from infrequent or noisy sampling of the point set.
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Figure 3.3: Trivial example of a Vietoris-Rips construction. On left we see
data, we cast a sphere of some radius ε over each observation and
make simplices of everything that is contained within the same
sphere. The final complex is visulalised on the right; here, the
complex is solely made of 1-simplices.

Example 3.2 Throughout this chapter we will focus on an easily understood
3-dimensional dataset known as the Open Box. The data is shown in Figure 3.4 and
is best thought of as a cardboard box with the ‘lid’ open, meaning the lid is only
connected to one of the ‘faces’ of the open box. It consists of 3000 data points and
each face is a square with side lengths 1. It should be clear that it is homeomorphic to
a 2-manifold and the ground truth manifold (as indicated by the black lines in Figure
3.4) consists of one connected component and no holes of any dimension.

Initially, we could try out ε ≈ 0 for our Rips-complex. This yields the trivial topology
of every point being their own connected component — or cluster. Sequentially, we can
increase ε and see how quick some components merge into one; we say one component is
‘dying’. For simplicial complex this increase in ε generates a filtration that is visualised
in Figure 3.5, and this is called a Rips diagram. This plot was generated using the Open
Box data from Figure 3.4.

Interpreting the output, we find that long lifetimes indicate a ‘persistence’ for a wide
range of ε values. Short lifespans indicate holes that only appear because of the noisy
nature of a finite sample size. In Figure 3.5 we illustrated (shaded area) that choosing
ε = 0.15 yields one connected component and two 1-dimensional holes, both of which
appear to be quite persistent. They are persistent because of their significantly longer
lifetime than the majority of the holes generated in this filtration.

This example illustrates the key idea of persistent homology: considering a filtration of
ε-values, can obtain good indications of the homology information, and ultimately build
our models on the most accurate topological space. Although the example indicated
two holes in the manifold, which differs from the ground truth, there are results that
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Figure 3.4: The 3-dimensional ‘Open Box’ dataset. Although, the perception
cheats, all faces are squares of area 1.

indicate persistent homology is robust, when samples are dense on the manifold [Chazal
and Michel, 2017]. Here we just outlined the ideas of persistent homology, and showed
how to ‘eyeball’ a robust value of ε.

3.2.3 Data Geometry

Geometry, in general terms, is a toolbox for dealing with lengths, angles and
volumes. The word originates from ancient Greek and translates to earth
measurement. Often, we find people talking about some space having a geometry. In
this terminology, they often mean some kind of structure, allowing them to consider
lengths, angles or volumes, built on top of some topological space. The simplest is
the Euclidean geometry, where every length between two points is the length of the
linear interpolation between them. If we allow the line to curve, or the surfaces to
have curvature we can describe this structure using Riemannian geometry. Here
curves are the generalization of lines, and manifolds the generalization of surfaces.

In non-linear dimensionality reduction [Lee and Verleysen, 2007] the goal is often to
capture this geometric structure induced by a dataset in RD and represent the dataset
— with its geometric structure — in Rq, where q << D. To make algorithms from
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Persistent hole

Figure 3.5: Rips Persistence Diagram. Black dots indicate connected
components that are all born at ε = 0, but die at later times. We
see that there is one persistent component. The red triangles are
the 1-dimensional holes. They are born at different time-points,
but most of them die shortly after; this indicates the hole was
caused by noise or infrequent sampling.

this, one common criterion is to preserve the distances of observations in RD in the
latent representation Rq.

Distance Preservation. The most fundamental algorithm that builds its
foundation on preservation of pairwise distances is Multi-Dimensional Scaling
(MDS). In fact, this algorithm is an umbrella term for a range of methods [Mead,
1992]. Classical metric MDS considers the case where distances between points in
RD are all the Euclidean distance

d(xi,xj) =

√√√√ D∑
k=1

(xik − xjk)2, (3.7)

and it then tries to find a latent presentation Z with the Euclidean metric such that
it minimises pairwise distances with the stress defined as

stress :=

N∑
i,j=1

(bi,j − 〈zi,zj〉)2, where bi,j =
〈xi,xi〉+ 〈xj ,xj〉 − d(xi,xj)

2

2
, (3.8)

which one can note does not directly minimise pairwise distances, but rather inner
products (which, of course, is closely related). The advantage of this formulation is
that there exists a closed form algebraic solution, and in the Euclidean case this is the
PCA solution.

A generalisation would be to consider the more straightforward definition of stress.
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That is, directly comparing pairwise distances

stress :=

N∑
i,j=1

(d(xi,xj)− d(zi,zj))
2, (3.9)

which is often optimised with gradient descent or stress majorisation. In this
formalisation, we do not require that the metric on the data space can be written as
some inner product. In fact, it is not a requirement that in fact is a metric, but we
can fill in any positive number to substitute d(xi,xj). There exists further
generalisations, such as non-metric MDS, but we will not expand on those here.

3.2.4 IsoMap

This section is dedicated to in depth describing the method introduced by Tenenbaum
et al. [2000]. The method is called IsoMap, and the aim is to consider the distances
between points induced by geodesics on some manifold instead of Euclidean distances.
We present the pseuso-code here, for easy reference, and expand on each step after.

Initialise Determine initial values Z = (z1,z2, . . . , zN ) in Rq. Go to NN-Graph.

NN-Graph Using either k-nearest neighbours or every neighbour within distance ε, compute
a neighbourhood graph for data-points X = (x1, . . . ,xN ). Go to Dijkstra.

Dijkstra For any two pairs, xi and xj , compute the shortest path length connecting them.
Set d(xi,xj) to this value. Go to metric-MDS.

metric-MDS Optimise the stress (3.9), with respect to latent points Z, until convergence.

The NN-Graph and the Dijkstra step is what really define the IsoMap algorithm.
The graph embedding is kind of a discrete manifold — the linear distance is a good
approximator, as long as the distance is small. It is also this step that introduces
the only hyperparameter of the algorithm, either k for a k-NN embedded graph, or ε
for a graph similar to the Vietoris-Rips complex (Definition 3.5) restricted to at most
contain 1-simiplices.

Dijkstra’s algorithm [Dijkstra et al., 1959] is an efficient computation of the shortest
path length between two nodes on a graph. The geometric interpretation here is
that if the neighbourhood graph is a good approximation of the manifold, then the
length between two nodes computed via Dijkstra is a representation of a geodesic on
the manifold. For dense matrices, it can be more efficient to use the Floyd-Warshall
algorithm [Floyd, 1962].
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Figure 3.6: IsoMap representation of the Open Box Dataset. Each colour
represent a face of the box, and can be compared with the colours
of Figure 3.4.

The final step in the IsoMap algorithm is to performmetric-MDS, in order to preserve
these ‘geodesic’ distances in our latent representation. That is, we optimise

stress :=

N∑
i,j=1

(dDijkstra(xi,xj)− d(zi,zj))
2, (3.10)

where dDijkstra is the shortest path on the neighbourhood graph and d is the Euclidean
distance.

Example 3.3 We revisit the Open Box dataset from Example 3.2. Our aim is to
represent the dataset in two dimensions — clearly, this is possible as there exists a
2-manifold. The dataset contains 3000 observations, so we choose to build a k-NN
graph using k = 5.

Figure 3.6 shows the latent representations. In this visualisation the Euclidean distance
should represent geodesics between points. We can observe that the faces of the boxes
seem to be well separated, except from the green and red in particular. Beyond this,
we see that the green, orange and cyan faces have a ‘rounding’ effect, and as such it
is not clear that they represent a square with side lengths 1.

Figure 3.6 further illustrates another common issue with IsoMap — it has tendencies
to create ‘holes’ that are not represented in the data. In other words, non-persistent
holes appear in the latent representation. This is likely explained with only considering
1-simplices naturally generates holes in the sense of Section 3.2.2. This is not the
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only topological concern with IsoMap; we are necessarily required to assume that the
manifold is path-connected, else we can not compute the distances between all points.
This issue can be averted by either removing outliers or considering two (or more)
clusters separately. The latter suffers from having no push effect between clusters,
unless an artificial one is created — i.e. separate clusters can theoretically intersect
in the latent space. The next section considers how we can keep the ‘path-connected’
assumption, but represent holes (also 0-dimensional holes) with uncertainty.

3.2.5 What is the role of Uncertainty in Geometry?

This section opens a discussion of the role of uncertainty within geometry. As discussed
already, geometry deals with computation of lengths, volumes etc. Revisiting the
manifold assumption, we assume that we can move along some manifold of dimension
q and always remain close to the data points embedded in RD. Mirroring this logic:
when we move away from the data points, we move off the low-dimensional manifold
— we may even say that we move into a hole. Recall here that a 0-dimensional hole is
simply the ‘gap’ between non-connected manifolds. For now, we will interpret a hole
as space a curve can not move through — this is coherent with the homotopy group
of the underlying topological space, but we stick with the interpretation for now. This
implies that all curves stay on the manifold (thus near data) and of course this is also
true for the geodesic. In this interpretation, holes are regions of the space with no (or
little) data support.

Hauberg [2018] studied these geodesics under different Riemannian manifolds. Some
of the experiments are shown in Figure 3.7. In (a), it shows the latent embedding
of a dataset which resides in R1000, and for (b)-(d) it shows the geodesics from three
different manifolds. We will go into depth on how the geodesics are computed in
the next section, when we discuss pull-back metrics. For now, we will consider the
background colour of (b)-(d) which indicates the determinant of the expected metric
tensor. In our setting the metric tensor is a 2 × 2 matrix (in general, q × q). Light
yellow indicates high values, and dark red lower values. We see that geodesics tend
to avert areas where this measure is high. The thing to notice here is that GPLVM
(also, yet to be introduced) is the only representation to obtain the geometry that the
manifold assumptions hypothesise. The GP uncertainty (with proper choice of kernel)
is high away from data, and we can see that the determinant of the metric tensor acts
similar — i.e. it is high away from data. Thus we can hypothesise that uncertainty is
correlated with the metric tensor.

This quick example brings us back to Chapter 1 and the idea that it is possible to
extrapolate uncertainty estimates; and we can as such cover holes with high uncertainty,
forcing geodesics to stay on the manifold. It also appears to be a good reason to
explore probabilistic (read Bayesian) generative models within manifold learning. We
will cover many of the concepts introduced here in the next section.
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(a) The embedding of
data in R2.

(b) RBF kernel. (c) RBF + linear
kernel.

(d) GPLVM.

Figure 3.7: Geodesics (white curves) computed from different manifolds in the
latent space visualised. Only the ‘uncertain’ GPLVM recover the
geometry that is coherent with the manifold assumption. This
figure originally appears in Hauberg [2018].

3.3 Generative Models

In statistical modelling, we can often separate generative and discriminative modelling;
given a dataset of explanatory variables X and target variable y we separate between
modelling

p(X,y) and p(y|X). (3.11)

In the first setup, the generative one, if our statistical model is successful, we can
generate new samples {X∗, y∗}. In the discriminative, we would have to knowX∗ = x∗

before generating a (perhaps) suitable y∗.

In this view, all generative modelling is density estimation. In this chapter, we are
interested in unsupervised learning, so we will be modelling datasets D = {xi}Ni=1

with no target variable. In machine learning, we often introduce latent variables zi
to assist us in modelling. In the previous sections we already encountered these as
latent representations of the data. For full disclosure, neither MDS or IsoMap are
dealing with statistical modelling, as we at no point treat either X or Z as stochastic
variables. This naturally also limit their uses to mostly visualisation purposes.

In the following, we will consider models which generating process reads

xi = f(zi) + εi, (3.12)

where zi is an unobserved (or latent) variable and ε follows some noise distribution.
In other words, we can optimise some likelihood defined p(x|f(z)) with respect to f
and z. If z is deterministic, this would be a discriminative model; if we assume a
distribution over z, we could marginalise it and optimise the marginal likelihood p(x),
and we would characterise it as a generative model. Models like (3.12), introducing
latent variables z are usually called latent variable models.

If z follows some distribution q, it is trivial to generate new samples from p(x), by
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first sampling z∗ ∼ q(z), and then x∗ = f(z∗) + ε is a sample from p(x).

Pull-back metric. Latent variable models of the type (3.12) provide a
framework for studying the geometry of the latent space using Riemannian
manifolds. Assume we have observed points X = (x1,x2, . . . ,xN )> ⊂ MX and
latent points Z = (z1,z2, . . . ,zN )> ⊂ MZ , where MX and MZ are Riemannian
manifolds. Let f :MZ →MX be a differentiable function.

Let c be a curve onMZ , and let us consider the length of the curve f(c) onMX . To
ease the analysis, we will assumeMX is the Euclidean space RD with the usual inner
product. Following (3.3) the length of f(c) can be computed∫ 1

0

∥∥∥∥∂f(c(t))

∂t

∥∥∥∥ dt =

∫ 1

0

√
〈ḟ(c(t))ċ(t), ḟ(c(t))ċ(t)〉dt (3.13)

=

∫ 1

0

√
〈Jc(t)ċ(t),Jc(t)ċ(t)〉dt (3.14)

=

∫ 1

0

√
〈Jc(t)ċ(t),Jc(t)ċ(t)〉dt (3.15)

=

∫ 1

0

√
〈ċ(t), ċ(t)〉Mf

Z
dt, (3.16)

where we defined 〈ċ(t), ċ(t)〉Mf
Z

= 〈ċ(t),J>c(t)Jc(t)ċ(t)〉.

Thus, Mf
Z is a Riemannian manifold with smooth varying inner product and the

associated metric tensor MZ(z) = J>z Jz for z ∈ Mf
Z . We call this the pull-back

metric (tensor), since we have pulled it from the Euclidean metric in RD through f to
our manifold of interest.

This is convenient for learning manifolds and metrics through observations in some
space, which usually for machine learning tasks is Euclidean, in the lack of better.
Now the function f allows us to study geometric properties of the data in latent
spaces. We remark that the pull-back metric exists for general metrics, i.e. we can
pull any Riemannian metric down, not just the Euclidean.

Example 3.4 We revisit Figure 3.7, and discuss why the geodesics have unwanted
behaviour. We recall the observed data resides in R1000 and that subfigure (a) is the
true latent representation1. Subfigure (b)+(c) use kernel ridge regression [Nadaraya,
1965] for the map f : R2 → R1000, i.e. a deterministic function. That is,

f(z∗) = k(z∗,Z)
(
k(Z,Z) + σ2IN

)−1
X. (3.17)

In (b), the kernel used is the RBF kernel, so why are the geodesics moving away
from the representation? By inspecting the metric tensor in regions away from data
we observe that the Jacobian J becomes 0, when we move away from Z, because f
becomes constant when we consider the RBF kernel. Thus, in the pull-back metric the

1Data was non-linearly embedded in R1000 from this representation.
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curves can move in these regions at no extra cost, hence geodesics would move to these
areas.

For (c) the kernel is a RBF kernel added to a linear kernel. Again, the RBF kernel
would tend to move geodesics away from data, while the linear components will
emphasize geodesics as linear interpolations.

The background color is what Bishop et al. [1997] call the Magnification factor. It

is defined as
√
det(J>J). Dark red colors indicate small values of it, which again

correlates with J ≈ 0. In the next section, we will investigate what happens if f is a
GP.

3.3.1 Gaussian Process Latent Variable Model

The Gaussian Process Latent Variable Model (GPLVM) [Lawrence, 2005, Titsias and
Lawrence, 2010] is a latent variable model where the generating process is a GP. The
model reads

xi = f(zi) + εi, i = 1, . . . , N, (3.18)

where ε ∼ N (0, σ2ID) and f : Rq → RD is a GP. Here, we assume the measurement
noise (i.e. the likelihood) is Gaussian, but it could be any distribution.

There exists formulations of the GPLVM, where the latents are treated as parameters
(or point estimates) to be optimised [Lawrence, 2005], and where they are marginalised
[Titsias and Lawrence, 2010]. The latter uses variational inference in GPs (Section
2.1.3) and maximise the ELBO given as

L = Eq(f,z)[log p(x|f(z)]−KL(q(u)‖p(u))−KL(q(z)‖p(z)), (3.19)

where u denotes the inducing points.

Derivative of a Gaussian Process. GPs are differentiable when their
covariance functions are differentiable [Rasmussen and Williams, 2006]. The linear
nature of the differential operation implies that the derivative of a GP is a GP itself.
Let J denote the Jacobian of a GP f : Rq → RD, with covariance function k for each
output dimension. Thus, J is a D × q-matrix. We can then write the joint Gaussian
of f = f(X) and the derivative J at some locations x∗ ∈ Rq as(

f

J>

)
∼ N

((
0
0

)
,

(
k(X,X) ∂k(X,x∗)

∂k(X,x∗)> ∂2k(x∗,x∗)

))
, (3.20)

where

∂k(X,x∗)i,d =
∂k(xi,x

∗)

∂x∗(d)
, and ∂2k(x∗,x∗)d,d′ =

∂2k(x∗,x∗)

∂x∗(d)∂x
∗
(d′)

, (3.21)
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where i = 1, . . . , N and d, d′ = 1, . . . , q. Here x(d) denotes the d-th entry in x ∈ Rq.
Notice the above is a multi-output GP, and we have for ease assumed a constant mean
prior, but it could be generalized.

We see that J>J is a Wishart process (see Definition 2.5). This is also the pull-back
metric tensor of the GPLVM.

Riemannian metric from the gplvm. Tosi et al. [2014] were the first to
study the Riemannian structure induced by the GPLVM. They make the observation
that the J is a GP and J>J is (non-central) Wishart distributed. The stochasticity
of the metric tensor — and thus randomness of the Riemannian manifold itself —
prohibit the use of the usual toolbox from differential geometry to compute geodesics.
For a deterministic manifold geodesics can be computed by solving the second order
ODE

c′′ = −1

2
M−1

(
2(Id ⊗ c′>)

∂vec(M)

∂c
c′ −

(∂vec(M)

∂c

)>(
c′ ⊗ c′

))
, (3.22)

where M = J>J . There exists other methods to compute geodesics, but this seems
to be the approach scaling most graciously. In fact, the problem with geodesics on
random manifolds is more fundamental than computations — there exists no
established definition or notion of what it means to be a geodesic on a random
manifold.

Tosi et al. [2014] avert this issue by considering the mean metric tensor. This is given
by

E[M ] = E[J>J ] = E[J>]E[J ] +D·Cov(J>). (3.23)

This way they can apply the rules from deterministic Riemannian geometry to analyse
our manifold. By inspecting the mean metric tensor, we observe that the uncertainty
in the GP is represented through Cov(J>). Here, it is crucial to realise that the mean
manifold is not the same as the manifold ‘pulled-back’ from the mean of f .

We can now revisit Figure 3.7 for the last time. The background colour in (d) is the
magnification factor from the mean metric tensor, i.e.√

det(E[M ]), (3.24)

and it is clear that the covariance term is dominant, when D gets large. For the
RBF kernel (as used in the figure, [Hauberg, 2018]) the extrapolation of variance for
f follows through to the Jacobian (up to a scaling). This explains why we see the
magnification factor is large away from data; and as a consequence geodesics always
lie close to the data region. The manifold pulled from the mean of f , would look like
Figure 3.7(b). Thus, the uncertainty is crucial for meaningful geodesics.

Eklund and Hauberg [2019a] study how the length of the curve on the mean manifold
approximates the mean length of the curve on the random manifold. They show that
as D gets large, the approximation is tight.
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The method we introduce in the next section is not the first that wish to encode
geometry and topology into the GPLVM. Other constraints have been tried out by
Urtasun et al. [2008] and Lawrence and Quiñonero Candela [2006].

3.4 Isometric GPLVM

In this section, we will cover the approach presented in Jørgensen and Hauberg [2020].
At the fundamental level, the model presented there base its ideas on the Bayesian
GPLVM and IsoMap. The main difference from the GPLVM is that its input is not
given as tabular data, but rather as proximity data — also known as dissimilarity
data. Hence, the model is coordinate-free, but only considers pairwise-distances. The
similarity with IsoMap is then, that we will try to maintain the geodesics along some
neighbourhood graph. This is based on the manifold assertion, i.e. we can anywhere
locally consider the space to be Euclidean. The consequence of this is that all short
pairwise distances have geodesics that are well-approximated by linear interpolation.
This is one of the central ideas of IsoMap as well.

We overcome some of IsoMap’s caveats, i.e. not being forced to have a fully connected
manifold, thus we are able to model datasets which contain persistent clusters. On
top of this, we inherent good uncertainty estimation in the estimated manifold. This
stems from the GPLVM part of the model, and we can assess the uncertainty at any
point in the continuum of the latent space. Unlike IsoMap the metric in the latent
space is not Euclidean; we may think of it as being an IsoMap with curvature.

Since we do not consider coordinates, we can not consider the GPLVM in the usual
sense. Instead, we model the Jacobian J directly to keep the implicit mapping f
isometric, i.e. distances in data space are equal to those in latent space. For
trustworthy geodesics, we introduce the concept of censoring — a tool known mainly
from survival analysis to handle ‘informed’ missing data. In the presented model, we
use it to keep large distances in data space large in latent space. Unlike most models
that deal with proximity data, we specify a full statistical model, in which we can
marginalise the underlying mapping and the latent representation too. A key step to
this is motivating a likelihood function based on Gaussian process theory. We will
here present the pseudo-code for the approach, to provide an overview, before
detailing each step.

Initialise Determine initial values Z = (z1,z2, . . . , zN ) in Rq. Go to Connectivity.

Connectivity Choose ε > 0. Construct the Vietoris-Rips complex V R(X , ε) for data-points
X = (x1, . . . ,xN ). Go to Censoring.

Censoring Right-censor all pairs that are not connected in the complex with the value ε.
Go to Optimise.
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A B C

Figure 3.8: A small dataset embedded in R3 and a 2-dimensional manifold
(red). Black lines are linear interpolations in R2, green lines are
curves on the manifold. Solid lines are short, and the manifold
distances should have approximately same lengths. Dashed lines
are not short, and manifold distances should not either.

Optimise Optimise the Nakagami-based ELBO (3.43), with respect to latent points Z and
J , until convergence.

We will begin the detailing of the algorithm from back to start. Thus, first we will
introduce the Nakagami motivated likelihood function. Remember, that our data
consists of N(N − 1)/2 observations of pairwise distances, we will denote them
{eij}i<j≤N . We are interested in finding a manifold that matches the shortest
distances. To do this we are considering the manifold distances

sij =

∫ 1

0

‖J(c(t))ċ(t)‖dt, (3.25)

where c(0) = zi and c(1) = zj . The curves we will consider lie on an implicit q-
dimensional manifold, and should approximate linear interpolations in RD, only when
curves are short. This motivation is visualised in Figure 3.8 where the manifold is
visualised by the red surface. The black lines are the linear interpolations and the
green are the manifold distances. We see when the black lines are short, they are
well-approximated by the green corresponding manifold distances. However, in (C) we
observe that the manifold distance is not approximating the black line well, since the
manifold curves.

Our data is observed Euclidean distances2 eij for any two points. We can compute
the same pairwise distance on the manifold sij . Now the question to ask could be
whether eij could originate from the distribution of sij . To do so we need to study
the distribution of Gaussian process arc lengths.

Let us first list a few of desiderata for our approach:

• A manifold is locally Euclidean, so short curves are approximately linear.

• Curves that are not short, are most likely non-Euclidean. Alternatively, long
Euclidean distances, should not be short on the manifold.

2This is not a strict assumption, it can be non-Euclidean, but we will consider this for now.
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In fact, we could say that any curve is longer on the manifold than in Euclidean
distance. First, we will consider the distribution of sij , when the manifold is a GP.
Then we will use censoring to enforce the topology.

3.4.1 Gaussian Process Arc Lengths

This section will present an approximation to the distribution of arc lengths of
Gaussian processes. Naturally, this implies that we need to assume the underlying
kernel to be smooth, as we know the Brownian motion (non-smooth kernel) has
infinite arc lengths. The arc lengths of smooth GPs were studied by Bewsher et al.
[2017] who found that these quantities could be approximated with the Nakagami
distribution. We are interested in the distribution of the arc length (or curve length)

s =

∫ 1

0

‖J(c(t))ċ(t)‖dt, (3.26)

where J is a Gaussian process3. Bewsher et al. [2017] start by studying the distribution
of the integrand

‖J(c(t))ċ(t)‖ =

√√√√ D∑
d=1

Jd(c(t))ċ(t)ċ(t)>J
>
d (c(t)), (3.27)

where Jd is the d-th row of the Jacobian matrix. For the remainder of this we will
assume ċ(t) to be constant — this is assuming the c(t) linearly interpolates between
points in latent space. This will make analysis easier. This means the inner product

Jd(c(t))

(
1
1

)
∼ N (µ, S), (3.28)

for some µ and S. One can then note that

D∑
d=1

Jd(c(t))ċ(t)ċ(t)
>J>d (c(t)) = u>u, (3.29)

for a Gaussian D×1 vector u. Since it is a sum of squared Gaussian variables, Bewsher
et al. [2017] suggest approximating it with a single Gamma variable.

On this basis, the integrand is Nakagami distributed, since it is the distribution of
square root of Gamma variables. But what about the distribution of s? We can
approximate the integral by a sum of highly correlated Nakagamis, where the
correlation stems from the continuity of the GP. There is some work on this by
Zlatanov et al. [2010]; they present a good approximation — especially for the very
correlated scenario. We choose to approximate s with a Nakagami based on this, as
the expression of Zlatanov et al. [2010] is not far from this.

3We assume it is the Jacobian of an implicit Gaussian process f
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This provides no accurate form of the distribution of s, but it provides a solid
motivation as to why we can use it for a likelihood function, when our data consists
of distances and our aim is to model these distances with GPs. Now, we will detail
the Nakagami and present the likelihood function.

Nakagami distribution. The Nakagami distribution [Nakagami, 1960] describes
the length of an isotropic Gaussian vector. The density function is

g(s) =
2mm

Γ(m)Ωm
s2m−1 exp

(
− m

Ω
s2
)
, s ≥ 0, (3.30)

and it is parametrised by m ≥ 1
2
and Ω > 0. Γ denotes the Gamma function. The

parameters are interpretable by the equations

Ω = E[s2] and m =
Ω2

Var(s2)
, (3.31)

which can be used to infer the parameters through samples, although it does involve
a fourth moment, yielding that it might not be sample-efficient.

Push-pull terms. We use (3.30) as our likelihood function, and if we feed in
only Euclidean distances we would expect the manifold to recover these.
Consequently, we would recover a probabilistic metric MDS, as we would match all
the linear distances. We are interested in non-linear dimensionality reduction, and as
listed in the desiderata above, we do not trust long Euclidean interpolations to reside
on the manifold. However the long distances still provide some global information
about the manifold, that we do not want to dismiss.

Carreira-Perpiñan [2010] noted that many modern non-linear dimensionality reduction
methods consists of push and pull terms in their objective function. Pull terms to find
the local patterns, and push terms to provide the global structure. In the next section,
we will introduce censoring, which will assist us in preserving global structure. This
will provide push terms to our method, while staying in the probabilistic framework.

3.4.2 Censoring

In this section, we will cover censoring and its role in manifold learning. Censoring is
a statistical concept emerging from the field of survival analysis [Lee and Wang, 2003].
At a low level it is an informed variant of missing data: we do not observe a value,
but we have information of where the observation could not be.

Assume we have observations {xi}Ni=1, originating from a distribution with cumulative
distribution function G and density function g. It could be that some observations are
not directly observed, but we observe their value is greater than some observed Ci. We
can augment the observation space in a way to encode this information: consider now
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observations {(xi, δi)}Ni=1, where

δi =

{
1 if xi ≥ Ci,
0 if xi < Ci,

(3.32)

i.e. an indicator function representing whether xi was censored to the right by Ci.
Here, I will only consider right-censoring, but note that left-censoring occurs when the
inequalities in (3.32) are mirrored. To make it clear, when δi = 1, then our observation
is the censoring value: xi = Ci.

Now we will formulate the likelihood in terms on the observations {(xi, δi)}Ni=1. The
marginal δ is binomial with probability parameter pδ := P(δi = 1) = 1 − G(Ci). We
formulate the likelihood as

L =

N∏
i=1

p
(
(xi, δi)

)
=

N∏
i=1

p(xi|δi)p(δi), (3.33)

where we can split it up

N∏
i=1

p(xi|δi)p(δi) =
∏
i:δi=1

p(xi|δi = 1)
(

1−G(Ci)
) ∏
i:δi=0

p(xi|δi = 0)G(Ci). (3.34)

The remaining conditional probabilities are defined as

p(xi|δi = 1) = 1 and p(xi|δi = 0) =
g(xi)

G(Ci)
, (3.35)

because in the first case xi = Ci by definition and in the second it is the definition of
conditional density. This implies that (3.33) simplifies to

L =
∏
i:δi=0

g(xi)
∏
i:δi=1

(
1−G(Ci)

)
. (3.36)

A likelihood function for isometric GPLVM. So far, we have argued the
Nakagami distribution is well-suited to capture manifold distances and that censoring
is a likelihood-based way of introducing push terms to keep global structure and avoid
matching large distance exactly. We introduce the final likelihood for the isometric
GPLVM here. Remember that eij denotes the observed (Euclidean) distance. Then
for some ε > 0 we define

L(
{
{eij}i<j

}N−1

i=1
|θ, ε) =

∏
eij<ε

gθ(eij)
∏
eij≥ε

(1−Gθ(ε)), (3.37)

where g and G are the pdf and cdf, respectively, of the Nakagami distribution. θ =
{m,Ω} are the parameters of the Nakagami (3.31). These parameters are determined
by the latent points (zi,zj) and the GP J in a way yet to be described.
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For completion we write the actual log-likelihood function up here

l
({
{eij}i<j

}N−1

i=1

∣∣∣θ, ε) =−
∑
eij<ε

(
log Γ (mij)+mij log

(
Ωij
mij

)

− (2mij−1) log (eij)+
mije

2
ij

Ωij

)
(3.38)

−
∑
eij≥ε

(
log Γ (mij)−log

(
Γ (mij)−γ(mij ,

mij

Ωij
e2
ij)

))
,

where Γ and γ denotes the Gamma function and lower incomplete gamma function,
respectively. The remaining questions are: how do we infer θij and how do we set ε?

3.4.3 Putting the model together

We infer the parameters of the Nakagami by introducing a latent Gaussian field J and
a latent representation z. The Nakagami was motivated as being the distribution of
curve lengths on Gaussian fields, thus we may write

p(θ|J ,z) :=

∫
p(θ|s)p(s|J ,z)ds, and p(θ|s) =

δEs2(Ω)

δ Ω
Var(s2)

(
m
)
,

(3.39)

where δ denoted the Dirac probability measure and p(s|J ,z) is Nakagami (see (3.26)).

In practice, we will finely discretize the curve4 c, and approximate s as a sum. This is
how we justified the Nakagami distribution. By sampling multiple J ’s we get multiple
samples from s, and from this we can estimate the parameters θ = {m,Ω} through
second and fourth moment (see (3.31)).

We will infer everything with variational inference [Blei et al., 2017]. Hence, we choose
a variational distribution over the variables to be marginalised. Let E := {eij}i<j≤N
denote our observed distances. We approximate the posterior p(θ,J ,z,u|E) with

q(θ,J ,z,u) := q(θ|J ,z)q(J ,u)q(z), (3.40)

where u is an inducing variable [Titsias, 2009b], and

q(θ|J ,z) = p(θ|J ,z), q(J ,u) = p(J |u)q(u) and q(z) = N (µz,Az), (3.41)

where µz is a vector of size N and Az is a diagonal N×N -matrix. Further q(u) =
N (µu,S) is a full M -dimensional Gaussian, with M << N .

From this we can compute the evidence lower bound to be

log p(E) = log

∫
p(E , θ,J ,z,u)

q(θ,J ,z,u)
q(θ,J ,z,u)dθdJdudz (3.42)

≥ Eθ[l(E|θ)]−KL
(
q(u)||p(u)

)
−KL

(
q(z)||p(z)

)
, (3.43)

4For practical concerns, we only consider linear curves in latent space.
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where (3.43) is the ELBO to be maximised.

The hyperparameter ε. The ε is the hyperparameter that determines the
connectivity and thus also controls the non-linearity of the model. Its interpretation
is much like that of IsoMap’s neighbourhood graph, but we do not require that our
underlying graph must be connected. We suggest using persistent homology (Section
3.2.2) to find a good value of ε, that captures the correct topology of the dataset.

Generative model. Jørgensen and Hauberg [2020] formulates a way to generate
new data points even though the generative mapping f is implicit. However, this
would require a isometric regression to immerse the learned manifold into RD. We
found no efficient implementation of this, but some work in isometric regression has
been done recently [Atzmon et al., 2020].

3.5 Empirical evaluation

We will inspect the presented model on the Open-Box dataset (Figure 3.4). The
latent representation is visualised in Figure 3.9, where the points are the means of the
latents z, which have a Gaussian prior. In comparison with the IsoMap representation
(Figure 3.6), the ‘rounding’ effect is not as prevailing here. Green and red seem more
separated, but there are still some difficulties — especially where they meet the orange
and cyan faces. The scaling of the axes are also different and should be noted. We see
that the areas, that each face make up, are more comparable here, but interestingly
in the case here, we can not trust our eyes too much when speaking of such geometric
quantities.

Where IsoMap forces the latent space to be Euclidean, our method naturally learns
the Riemannian structure of the latent space from the ambient space. Thus geodesics
can not be trusted to be linear interpolators. We consider this behaviour on a higher
dimensional, but well-known dataset.

The MNIST dataset contains 60000 greyscale images of handwritten digits. We
consider a subset of 5000 of these (mostly for visualisation purposes), but every digit
is represented in the subset. The dataset is 784-dimensional, one for each pixel in the
images, our aim will be to represent it using two dimensions. To further point out
key differences to the ‘standard’ GPLVM, we choose to use a different metric than
the Euclidean for the ambient space R784. We consider a lexicographic metric
[Rodriguez-Velazquez, 2018]

dLEX(xi,xj) =

{
r, if yi 6= yj ,

min{2r, d(xi,xj)}, if yi = yj .
(3.44)

Notice, that this metric uses the label information at training time, but this trick can
be used for other categorical variables to encode topology.
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Figure 3.9: The latent representation of the Open Box dataset using the Iso-
GPLVM. The points are the mean of the latents z.

Figure 3.10 visualises the latent representation. The coloured dots are datapoints,
colour coded by the integer in each image. To this end we see that the integers are
accurately separated by the integers. The coloured lines are geodesics between points
in latent space. Here, we observe that geodesics are in regions of high data density.
The green geodesics, in particular, have comforting interpretations aligning with the
desiderata of the approach. The ‘interpolation’ from images of 9’s to 2’s could have
linear interpolated through 8’s, but instead traverse them and stay in the 9’s averting
areas of high uncertainty.

On this note, the background colour is a good indicator of uncertain regions. It
indicates the magnification factor (Eq. (3.24)), which we argued is a ‘cost’ of moving
through some point. Further, the interpretation is coherent with the desiderata, that
this magnification factor is small in the data regions and high in extrapolated area,
encouraging geodesics to stay on the data manifold. Comparisons with other metrics
and further baselines can be found in Jørgensen and Hauberg [2020].
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Figure 3.10: 2-dimensional representation of MNIST data. The coloured
lines are geodesics computed using the magnification factor
(background colour) of the mean manifold.

Future directions

One major bottleneck, also mentioned previously, is the actual optimisation for
GPLVMs in general. They tend to be highly sensitive to initialisation. One idea to
overcome this would be to use natural gradients. However, going forward we would
replace the optimisation of the latents z with amortised inference. In a few words,
amortised inference is a way of optimising over something else than the quantity we
are conceptually optimising. For our needs, this would be exemplified by introducing
a parametrized neural network, which would act as an encoder x− > z and we would
optimise the parameters of this network. The hope here would be that this approach
has more flexibility. Usual methods, such as MDS, are known to be sensitive to
initialisation too. We also recognise a need to establish a notion of random geodesics.
In all experiments above, a geodesic is defined on deterministic manifolds — we
simply compute them on the mean manifold. This has been shown to be a good
approximation [Eklund and Hauberg, 2019b], under certain conditions which are
perhaps a bit strict for many real-world settings. At this point, we are not settled on
whether such a notion should be a distributional approach, by which we mean that a
geodesic would actually be a distribution over curves in latent space. The alternative
to this would be a single (deterministic) curve in the latent space, which would then
satisfy something for the distribution of GP arcs in the ambient space RD.

On this note, the GP arc lengths were loosely assumed Nakagami distributed. More
accurately, we chose the Nakagami likelihood as a ‘best-fit’ solution. This assumption,
or choice, was based on theoretical findings in Bewsher et al. [2017]. However, it is not
clear how tight the approximations here are. These findings are mostly dealing with
very short curves, as they are dealing with the ‘integrand distribution’. Empirically,
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they briefly show that the Nakagami overshoots the variance of GP arc lengths, which
is why we envision there can be attained tighter approximations, which potentially
would benefit our model.

Lastly, the actual embedding of the manifold into ambient space, such that we are able
to effortlessly generate new data points is non-trivial. We repeat from earlier, that we
are looking for an isometric embedding, such that f(z) ≈ x. Finding such an f , would
make the model generative in the usual sense.



Chapter 4

Non-parametric Causal
Discovery

So far in this thesis we have considered statistical models. In this chapter, we will
change to causal models. How are they different? Classical statistical modelling cares
about estimating probability distributions and learning the dependencies between
random variables. In causal modelling, we are interested in modelling the data
generating process. In more technical terms, say we have three random variables X,
Y and Z, then statistical learning or modelling would try to infer the distribution
p(X,Y, Z). Contrarily, causal models encodes a hierarchy between the random
variables, e.g. if X changes then Y changes, but the reverse does not necessarily
hold. It could further be that if Y changes then Z changes, but again not the
opposite. This constitutes the causal graph

X → Y → Z,

and we would say that X is a direct cause of Y , and an indirect cause of Z.

Causal graphs are usually encoded as Directed Acyclical Graphs (DAGs). In this
framework, we will discuss causal relationship, both direct and indirect, and
conditional independencies, which are fundamental when dealing with purely
observational data. This allows us to create sparse graphs, that ultimately gives us
information of the data generating process. We will briefly discuss structural
equation models — a model class where each variable is a function of its parents in
the DAG and some noise. For certain function classes, the underlying graph is said
to be identifiable — which means we can recover the true causal relationship through
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data — under this assumption that the functions belong to some particular model
class.

A common phrase uttered in the communities involved with statistics is ‘correlation
does not imply causation’, and there exists a multitude of examples confirming this.
However, sometimes there is a causal explanation; this triggers the question: can we
infer what is the cause and what is the effect? In general, this is a hard question, and
we will see that in fact in the bivariate case the answer is no. This will however not
hold scientists back from trying anyway.

The contribution in this chapter is in this bivariate regime and is based on the paper
Reparametrization Invariance for non-parametric Causal Discovery [Jørgensen and
Hauberg, 2020]. It tries to make informed decisions to the bivariate causal query: is
X the cause or the effect of Y ? It takes base in the principle, that if X causes Y , then
f(X) causes g(Y ), where f and g are bijections.

4.1 Causality

To understand causality it is important to understand randomisation or experimental
control. Say we are interested in two random variables X and Y and their causal
relationship. Suppose the ground truth is that X causes Y , but this is unknown to the
experimenter, whom we will call E. To investigate a first strategy could be to observe
X and Y . This will provide us with data to estimate p(X,Y ), and the conditional
distributions p(X|Y ) and p(Y |X) and lastly also the marginals p(X) and p(Y ). This
situation is depicted in Figure 4.1A. The experimenter is here able to see that X and
Y are dependent, but is unable to determine what is cause and effect. To infer this
relationship, the experimenter has to intervene.

An intervention is when the experimenter is actively involved in the experiment. Say,
the experimenter is able to fiddle with the experiment to ensure that X = x. Pearl
[2009] denotes this do(x). This situation is the one visualised in Figure 4.1B, where the
experimenter intervenes on X. The data that is collected now is called interventional
data, as opposed to observational data. This gives us data to estimate the distributions
p(Y |do(x)). The experimenter will in this setting notice that p(Y |do(x)) 6= p(Y |do(x′)),
which means that the behaviour in Y changes when we intervene on X, for x 6= x′.

Figure 4.1C depicts the situation where the experimenter intervenes on Y , i.e. do(y).
This intervention means that anything else that could have been the cause of Y ,
is no longer the cause of Y , since the experimenter is the cause Y = y through the
intervention. Now, the experimenter will observe that p(X|do(y)) = p(X), i.e. that the
interventional distribution p(X|do(y)) is no different than the marginal p(X). Thus,
our intervention on Y has no effect on X, hence Y can not be the cause of X. With
these consideration, we can formalise the definition of cause and effect.
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BA C

Figure 4.1: An experimenter E can choose to observe (situation A), intervene
on X (situation B) or intervene on Y (situation C).

Definition 4.1 If for some x 6= x′, we have that P(Y |do(x)) 6= P(Y |do(x′)), then
X is a cause of Y .

The observation also notes the following; if X causes Y then

(i) p(X|do(y)) = p(X) 6= p(X|Y = y),

(ii) p(Y |do(x)) = p(Y |X = x) 6= p(Y ).

In practice, interventions are often impossible, expensive or ethically wrong. This
raises the question, can we recover the causal relationship between variables based on
only observational data? There is plenty of active research to this end, and the answer
seems to be: sometimes. One thing, we can note from Definition 4.1 is that if X causes
Y , this does not exclude that Y also causes X.

Direct causes and confounders. A causal graph is a graph that has random
variables as its vertices and a directed edge between two vertices, say from X to Y , if
and only if X is a direct cause of Y . Without formalism, X is a direct cause of Y if
the relationship is not mediated through any other variable. In other words, if we fix
all other variables (except X and Y ) and intervene on X, this would still be detected
in Y .

In fact, the building blocks in causal graphs can be phrased in triplets of variables
(X,Y, Z). They are visualised in Figure 4.2. Figure 4.2A visualises what is often
referred to as a chain, where the causal effect from X to Y is mediated by Z. Here
Z is a direct cause of Y , while X is an indirect cause of Y , but a direct cause of
Z. In 4.2B we see what is commonly referred to as a fork. Here, Z is known to be a
confounder of X and Y . This situation is of particular importance, as in the real-world
there will often exist unobserved or hidden confounders. Reichenbach and Reichenbach
[1991] formalised the principle of common causes, that states if two variables X and
Y correlates, then one is the cause of the other or there exists a third variable Z,
which causes both of them. This paints a fuller picture than the tiresome expression
‘correlation does not imply causation’.

Figure 4.2C pictures the last option, where Z is a so-called collider. Here both X
and Y are causes of Z, but X and Y are at the same time independent of each other.
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A B C

Figure 4.2: The ‘building blocks’ of causal graphs. A is a chain, B is a fork,
and C is a collider.

Interestingly, they are not conditionally independent.

Conditional Independence. Two random variables X and Y are independent
conditioned on a set of variables Z if and only if

p(X,Y |Z) = p(X|Z)p(Y |Z), (4.1)

and notation-wise we write X ⊥⊥ Y |Z. We will also consider d-separations, but we
need to introduce some notions on graphs. Let G be a graph with vertices Xi, for
i = 1, . . . , p, and Xi are also random variables. Let E denote the edge set of the
graph.

(i) A path in G is a sequence of distinct vertices Xi1 , . . . , Xin such that (ij , ij+1) or
(ij+1, ij) is in E for all 1 ≤ j < n. The path is called directed if (ij , ij+1) ∈ E,
for all 1 ≤ j < n.

(ii) A node Xi is a child of Xj if (j, i) ∈ E. Xj is called a parent of Xi. Xi is
a descendant of Xj if Xi is a child of a descendant of Xj . Note the recursive
definition.

(iii) A path between two nodes Xi and Xj is blocked by a disjoint subset of vertices
Z if there is a node S in the path which satisfies one of

• S ∈ Z and S appears as a fork or a chain in the path (see above).

• S is a collider in the path, and none of its descendant, or S itself, is in Z.

If Z blocks all paths between Xi and Xj , then Z is said to d-separate Xi and
Xj .

(iv) G is a DAG if there is no pair of nodes, for which there exists directed paths ‘in
both directions’.

(v) The joint distribution p(X1, . . . , Xp) is Markov with respect to the DAG G if,
for disjoint subsets X,Y ,Z of the vertices, satisfies

X and Y are d-separated by Z =⇒ X ⊥⊥ Y |Z.

(vi) The distribution is said to be faithful if the reverse implication is satisfied.
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Faithfulness is an assumption we have to make and generally can not be tested or
verified from the data directly [Zhang and Spirtes, 2008]. If faithfulness is not satisfied
then identifiability through testing conditional independencies is not guaranteed.

PC Algorithm. The PC algorithm assumes the distribution is faithful to the
underlying DAG. This yields the Markov equivalence class identifiable, and thus any
query of d-separation can by inferred by corresponding conditional independence tests.

Spirtes et al. [2001] initialise the PC algorithm with a fully connected undirected graph
and increase the size of the conditioning set Z at each iteration, initialising with the
empty set. At iteration j, it considers conditional sets Z consisting of j variables. To
see whether X and Y can be d-separated, one only needs to consider sets Z that are
subsets either of the neighbours ofX or of the neighbours of Y . This is computationally
very appealing, especially for sparse graphs.

The output of the PC algorithm is not a DAG, since not all edges can have their
direction determined. However, it can infer a lot a causal information in the arrows
that are determined. The usefulness of DAGs is that sometimes it is possible to
estimate causal effects through only observational data and conditional probabilities,
as opposed to interventional distributions. We will not detail how this is done, as we
will focus on the simpler setting of only two variables.

4.2 The bivariate causal discovery problem

In this section, we will consider the simplest of all DAGs - the bivariate DAG (the
univariate is not too interesting). We observe that the joint distribution p(X,Y ) has
two factorisations p(X|Y )p(Y ) and p(Y |X)p(X), which corresponds, respectively, to
the graphical models Y → X and X → Y . From a statistical viewpoint, both of
these are valid, but at most one of them can be causal, so how can we determine
this? Naturally, we need interventional distributions to decide this (which introduces
a third variable, the experimenter, see Figure 4.1). We need to approach the problem
differently. Remember, that if p(X|do(y)) = p(X), then Y is not the cause of X, and
if p(X|do(y)) = p(X|Y = y), it is.

We need some kind of way to break the symmetry of the joint distribution and its two
factorisations. One way is to say, that X is a cause of Y if we can write the Y as a
function f of X and some noise NY

Y := f(X,NY ). (4.2)

The issue is that we can always write this model — in both directions — and we
can always find such a f . If we look to tighter definitions of the model class which f
belongs to, we may break this symmetry. This is the approach of Structural Equation
Models (SEMs), where we restrict f to have a certain structure. Under certain model
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assumptions, we can show results on identifiability. That is, we can infer the causal
direction from purely observational data. In this chapter, we will consider additive
noise models (ANMs). Of course, this is a limitation that the model class where this
is true is too narrow, and what happens if the data does not support such models?
We note that identifiability within ANMs can be achieved, but this does not imply a
causal identifiability.

The one thing we need to keep in mind for bivariate causal discovery is that any
inference scheme is based on some interpretation of Occam’s razor. We can not from
observational data identify causal directions, thus we are forced to consider the most
likely or simplest explanation based on some principles or experiences. It is these
principles that break the symmetry of correlation.

Additive noise model. The hypothesis suggested by Hoyer et al. [2009] is that
if the joint distribution p(X,Y ) satisfy an additive noise model from X to Y , then it
is very likely that X is the cause of Y [Mooij et al., 2016]. An additive noise model
from X to Y is defined as

Y = f(X) +NY , where X ⊥⊥ NY . (4.3)

We may without loss of generality assume E[NY ] = 0, but the important message here
is that the ‘supposed cause’ X is independent of the noise NY .

Hoyer et al. [2009] operationalize this observation by performing Gaussian process
regression on a training set, i.e. f is a GP and Y = f(X) + NY . Then they test
for independence of X and NY using Hilbert-Schmidt Independence Criterion (HSIC)
[Gretton et al., 2005] on the test set. This scheme is performed in both directions,
X → Y and Y → X, and they infer the causal direction as the one with the best HSIC
score.

Next we will consider an approach, that makes the strong assumption of no noise.

Information-Geometric Causal Inference. Janzing et al. [2012] base
their approach on the assumption the the marginal p(X) contains no information
about the conditional p(Y |X), if X causes Y . Their method, Information-Geometric
Causal Inference (IGCI), is based on the restriction that X and Y are related, in a
deterministic way, by a bijection f , i.e. Y = f(X) and X = f−1(Y ).

To formalise what the ‘no information’ criterion is they consider the covariance of
log f ′(X) and p(X), where it helps to think of these as random variables. More
precisely, the covariance with respect to the uniform distribution

Cov(log f ′(X), p(X)) =

∫ 1

0

log f ′(x)p(x)dx−
∫ 1

0

log f ′(x)dx

∫ 1

0

p(x)dx. (4.4)

If this is 0, indicating no shared information of f (which is p(Y |X) in the deterministic
case) and p(X), then the opposite direction is only 0 if f is linear. Hence, it breaks
the symmetry of correlation.
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Since
∫ 1

0
log f ′(x)dx ≤ log

∫ 1

0
f ′(x)dx = 0 (wlog. for now assume f is strictly increasing

on [0, 1]), then the above covariance can only be 0 if

CX→Y :=

∫ 1

0

log f ′(x)p(x)dx ≤ 0. (4.5)

Hence, to make an decision-making algorithm of this Janzing et al. [2012] estimates
CX→Y with

ĈX→Y =
1

N − 1

N−1∑
i=1

log
|yi+1 − y − i|
xi+1 − xi

, (4.6)

where x have been sorted such that xi < xi+1 for i = 1, . . . , N − 1. Further, both X
and Y have been transformed such that their extrema lies on 0 and 1. Then, they
infer X → Y if ĈX→Y < ĈY→X .

The non-parametricity of this approach is appealing to our approach, but the
assumption of no noise is too restricting for practical purposes. Although, IGCI have
performed surprisingly good on the real-world dataset CEP [Mooij et al., 2016], a
possible explanation for this is provided in Jørgensen and Hauberg [2020]. Our
contribution, relies more on the next causal inference scheme.

Regression-Error based Causal Inference. Blöbaum et al. [2018]
propose an inference scheme which measures the regression errors in an additive
model

Y = f(X) +NY , (4.7)

but they have no restriction on NY being independent of X, i.e. there can be
heteroskedastic noise. They show, based on one key assumption which we will discuss
shortly, that

E[Var(X|Y )] ≥ E[Var(Y |X)], (4.8)

under this assumption.

The assumption is the condition that

Cov(f ′(X),E[Var(Y |X)]p(X)) = 0. (4.9)

Say X causes Y , then informally, this entails a form of independence between the
causal marginal distribution X and the conditional p(Y |X). Consider the case of
constant noise NY = E[Var(Y |X)], which would yield an ANM. Then the condition
reduces to

Cov(f ′(X), p(X)) = 0, (4.10)

which is very similar to the causal principle considered by IGCI. This is also what is
formalised as the principle of independent mechanisms in Peters et al. [2017].

Equation (4.8) provides an actionable inference algorithm. Assume the additive noise
model in both directions, and compute the regression errors NY and NX . Here, we
assume that both X and Y have been scaled for fair comparison (this is also assumed
for their theoretical results). Then we can infer the most likely causal direction to be
the one that gives the smallest regression error. This regression is done by different
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Figure 4.3: The invariance principle. If X is a cause of Y , then theoretically
arrows from fi to gi should point to the right for all i = 1, . . . , n.
Inconsistency in these arrow, can be interpreted as uncertainty.

parametrized regression-types, e.g. polynomials or neural networks — it is not
immediately clear, that this provide fair comparison of the regression error.

Unfortunately further, this inference is mostly stable when the noises are small, but it
is an improvement over IGCI’s ‘no-noise assumption’.

4.2.1 Reparametrization Invariance

This section aims to outline the ideas presented in Jørgensen and Hauberg [2020]. The
title of the section is informative for the fundamental principle on which the approach
is based. We state that principle here.

A deterministic bijective reparametrization of the observed variables does not change
the causal direction.

For bivariate data, this principle is also represented by the equivalence: X is the cause
of Y if and only if f(X) is the cause of g(Y ), where f and g are bijective functions.

The motivation for this principle can be phrased by the relationship of X and f(X).
f(X) is a bijection of X, simultaneously X is a bijection of f(X). If we choose to
intervene on either, we would change the other — in reality an intervention on either
would be an intervention on both. By Definition 4.1 we may then say that X is a cause
of f(X) and f(X) is a cause of X. This would then imply that, that if X is a cause
of Y , then f(X) is a cause of Y too. Theoretically, f(X) would be a indirect cause,
but the deterministic relationship of X and f(X) would make it practically direct.
A symmetric argument would then yield the equivalence stated above, which is the
principle exactly.

How can we operationalize this principle? Figure 4.3 indicate our approach, if for some
fi and gj , where i, j = 1, . . . , n, we have gj is a cause of fi, then X can not be a cause
of Y . Likewise, if fi is a cause of gj , then Y can not be a cause of X, since X there is
a descendant of Y in the ‘causal’ graph. Thus, the approach is to create n bijections
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of both X and Y , and test the causal relationship among all these bijective copies of
X and Y . If the decisions here are coherent, the causal link is likely strong. If they
are sensitive to these bijections, this interprets as uncertainty in the causal estimator.

Non-parametric error estimator. The approach presented in Jørgensen
and Hauberg [2020] aims to take a advantage of the invariant principle by the
regression-error based inference. This choice was made as we, at first, can say that
structural equation models, such as ANM, are not invariant under reparametrizations
— a reparametrized ANM does not necessarily yield another ANM. In fact, this does
not hold for any of the presented inference schemes, but we will empirically verify
that the approach we present is more robust. The method we use differs from
Blöbaum et al. [2018] in one fundamental way, beside the invariance, and that is
non-parametricity.

Any parametrized form of regression can not guarantee to order the regression errors
unanimously, when we take bijections on the marginals. We choose to compute the
regression error non-parametrically by a simple sorting. We observe

1

N − 1

N−1∑
i=1

(yi+1 − yi)2 → 2EVar(Y |X), (4.11)

for N →∞ and where we sort X, such that x1 ≤ x2 ≤ · · · ≤ xN .

If we standardise both X and Y to have unit variance we can compute the comparable
quantities CX→Y and CY→X like

CX→Y := 1− 1

2(N − 1)

N−1∑
i=1

(
yi+1 − yi

)2
, (4.12)

and based on Blöbaum et al. [2018] we can say that if CX→Y < CY→X , then it is likely
that X is the cause of Y . This provides a really efficient way to compute this quantity
many times, and thus for many pairs of bijections. We present here the pseudo-code
for the inference scheme and elaborate after.

Initialise Determine number of bijections n. Go to Biject.

Biject Sample two bijective functions f and g. Go to Regress.

Regress Perform the implicit regression, and evaluate the regression errors CX→Y and
CY→X . If less than n iterations done, go to Biject; else go to Confidence.

Confidence Based on the n computations of CX→Y and CY→X , compute the confidence in
the causal decisions, respectively.

In the above algorithm, we choose to perform n bijections of X and Y . We omit details
on how the bijections are sampled — we refer to Jørgensen and Hauberg [2020] for



80 Non-parametric Causal Discovery

the details. We also already discussed the implicit regression and the computation of
regression errors in (4.12). To discuss the last point — confidence — we introduce
uncertainty associated with the causal decisions.

4.2.2 Uncertainty in decisions

In Figure 4.3 we argued how the n bijections can give indications to how unanimous
the causal directions between X and Y are. This translates into an uncertainty — if
all decisions are aligned, we are confident in the final causal decision. In the algorithm
above, we thus associate a confidence in any causal decision. We define this as

conf := |px − 0.5|, (4.13)

where px is the probability of X → Y . This probability is computed based on all the
values of CX→Y and CY→X computed over all bijections. In Jørgensen and Hauberg
[2020] we suggest to compute it as

px =
1

n

n∑
i=1

1{C(i)
X→Y < C

(i)
Y→X}. (4.14)

This would approximate the probability of the event CX→Y < CY → X, where both
C’s have marginalised out the reparametrizations. We note that px has the least
confidence when px = 0.5, which makes sense because px+py = 1. Thus the confidence
as defined in (4.13) is associated with the joint distribution and not the causal decision
X → Y — it measures only how confident we can be in the decision.

Evaluation. Mooij et al. [2016] present a simulated dataset, that is supposed to mimic
realistic datasets, but we have a ground truth causal relationship, i.e. we know the
data generating process. On the dataset we investigate here, it is actually generated
to be an ANM. We are interested in the robustness of the different presented causal
inference schemes when faced with reparametrization of the marginals. The dataset
consists of 100 different pairs (X,Y ), which can be read as the rows of the ‘matrices’
shown in Figure 4.4. Each pair consist of 1000 datapoints. The columns are then 20
bijections applied to each pair.Red indicates the inference scheme takes an incorrect
decision on this parametrization. Black is a correct one. The figures can be thought
of as 100 × 20-matrices, that we have colored out whether the decision is correct or
not. In this setup, robustness would be measured in full bars; by which we mean
rows that take one colour only, correct or not. On this dataset, MQV (mean quadratic
variation, refers to the algorithm described above), is the most robust. RECI refers
to Blöbaum et al. [2018]. ANM and IGCI are Hoyer et al. [2009] and Janzing et al.
[2012], respectively.

On the qualitative performance of each of the methods we refer to Jørgensen and
Hauberg [2020]. In a few words, most methods are competitive on the real world
dataset, albeit IGCI is subpar on simulated datasets. The scarcity of real world data
makes it difficult to accurate assess on the performance. In the next section, we cover
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ANM IGCI

RECI MQV

Figure 4.4: On the 100 pairs (rows) from benchmark [Mooij et al., 2016]
simulated dataset, we applied 20 random bijections (columns).
Above illustrates how the bijections influenced the decision. Red
is an incorrect decision. MQV has ‘fuller’ bars, indicating that
decisions are less influenced by bijections.

a simple extension of the non-parametric reparametrization approach to multivariate
data.

4.2.3 Multivariate extension

An interesting feature of the reparametrization and regression-error approach is a
connection to the usual multivariate DAG estimation. We can read this theorem
[Jacod and Protter, 2000] as a reparametrization invariance.

Theorem 4.2 Two random variables X and Y are independent if and only if

Cov(f(X), g(Y )) = 0, (4.15)

for any pair of functions f and g that are bounded and continuous.

Remember from earlier, that DAG estimation is closely linked to conditional
independence testing, and we say that two variables X and Y and conditional
independent on Z, if their conditional covariance is 0 for any reparametrization. The
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conditional covariance can be estimation in an analogous way to the way we
estimated the regression-error (or conditional variance). We observe

1

8(N − 1)

N−1∑
i=1

((
si+1 − si

)2 − (ti+1 − ti)2

)
→ ECov(X,Y |Z) (4.16)

as N → ∞. Here si = xi + yi and ti = xi − yi, and the indexing is determined by a
sorting of Z, i.e. z1 ≤ z2 ≤ · · · ≤ zN .

On this inspection, only a small tweak to the algorithm presented above changes it
to a conditional independence test. In Jørgensen and Hauberg [2020] there is a toy
example evaluation of this based on simulated data.

Future directions

The conditioning set in this last part is, as presented here, restricted to being
one-dimensional because of the sorting. Thus, we can not use it as a conditional
independence test in the PC algorithm. It would be an interesting future project to
generalise this sorting constraint and perhaps use kernel methods to estimate the
same quantity.

A major bottleneck for the bivariate causal estimation problem is the lack of real world
data [Mooij et al., 2016]. This cast a large uncertainty over any empirical evaluation
on the scarce data that exist.



Bibliography

L. Andreas and M. Kandemir. Differential Bayesian neural nets. arXiv:1912.00796,
2019.

S. Asmussen and P. W. Glynn. Stochastic simulation: algorithms and analysis,
volume 57. Springer Science & Business Media, 2007.

M. Atzmon, A. Gropp, and Y. Lipman. Isometric autoencoders, 2020.

J. Bewsher, A. Tosi, M. Osborne, and S. Roberts. Distribution of gaussian process arc
lengths. In Artificial Intelligence and Statistics, pages 1412–1420, 2017.

C. M. Bishop, M. Svens’ en, and C. K. Williams. Magnification factors for the som
and gtm algorithms. In Proceedings 1997 Workshop on Self-Organizing Maps, 1997.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review
for statisticians. Journal of the American statistical Association, 112(518):859–877,
2017.

P. Blöbaum, D. Janzing, T. Washio, S. Shimizu, and B. Schölkopf. Cause-effect
inference by comparing regression errors. In International Conference on Artificial
Intelligence and Statistics, pages 900–909, 2018.

M.-F. Bru. Wishart processes. Journal of Theoretical Probability, 4(4):725–751, 1991.

D. Burt, C. E. Rasmussen, and M. Van Der Wilk. Rates of convergence for sparse
variational gaussian process regression. In International Conference on Machine
Learning, pages 862–871, 2019.

R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth. Manifold gaussian
processes for regression. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 3338–3345. IEEE, 2016.

G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46
(2):255–308, 2009.



84 BIBLIOGRAPHY

M. Á. Carreira-Perpiñan. The elastic embedding algorithm for dimensionality
reduction. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, pages 167–174, 2010.

F. Chazal and B. Michel. An introduction to topological data analysis: fundamental
and practical aspects for data scientists, 2017.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018.

K. Cutajar, E. V. Bonilla, P. Michiardi, and M. Filippone. Random feature expansions
for deep gaussian processes. In International Conference on Machine Learning, pages
884–893, 2017.

Z. Dai, A. Damianou, J. González, and N. Lawrence. Variational auto-encoded deep
gaussian processes. arXiv preprint arXiv:1511.06455, 2015.

A. Damianou and N. D. Lawrence. Deep Gaussian processes. In Artificial Intelligence
and Statistics, 2013.

S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

N. S. Detlefsen, M. Jørgensen, and S. Hauberg. Reliable training and estimation of
variance networks. In 33rd Conference on Neural Information Processing Systems,
2019.

E. W. Dijkstra et al. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

M. M. Dunlop, M. A. Girolami, A. M. Stuart, and A. L. Teckentrup. How deep are deep
gaussian processes? The Journal of Machine Learning Research, 19(1):2100–2145,
2018.

D. Duvenaud, O. Rippel, R. Adams, and Z. Ghahramani. Avoiding pathologies in very
deep networks. In Artificial Intelligence and Statistics, 2014.

D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive gaussian processes. In
Advances in neural information processing systems, pages 226–234, 2011.

W. E. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 5(1):1–11, 2017.

B. Efron. Bootstrap methods: Another look at the jackknife. Ann. Statist., 7(1):1–26,
01 1979.

D. Eklund and S. Hauberg. Expected path length on random manifolds. arXiv preprint
arXiv:1908.07377, 2019a.

D. Eklund and S. Hauberg. Expected path length on random manifolds. arXiv preprint
arXiv:1908.07377, 2019b.



BIBLIOGRAPHY 85

R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Econometric
Society, pages 987–1007, 1982.

R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962.

A. Y. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner. ’in-
between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537,
2019.

C. Fu and D. Cai. Efanna : An extremely fast approximate nearest neighbor search
algorithm based on knn graph. 09 2016.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050–1059, 2016.

T. Gao and V. Jojic. Degrees of freedom in deep neural networks. In Proceedings of the
Thirty-Second Conference on Uncertainty in Artificial Intelligence, pages 232–241,
2016.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian Data Analysis. CRC Press, 2014.

P. Goovaerts et al. Geostatistics for natural resources evaluation. Oxford University
Press on Demand, 1997.

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. Algorithmic Learning Theory, pages 63–78,
2005.

E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, 2017.

S. Hauberg. Only bayes should learn a manifold (on the estimation of differential
geometric structure from data). arXiv preprint arXiv:1806.04994, 2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition, 2016.

C. Heaukulani and M. van der Wilk. Scalable Bayesian dynamic covariance modeling
with variational Wishart and inverse Wishart processes. In Advances in Neural
Information Processing Systems, 2019.

P. Hegde, M. Heinonen, H. Lähdesmäki, and S. Kaski. Deep learning with differential
Gaussian process flows. In Artificial Intelligence and Statistics, 2019.

J. Hensman, A. G. d. G. Matthews, M. Filippone, and Z. Ghahramani. MCMC
for variationally sparse Gaussian processes. In Advances in Neural Information
Processing Systems, 2015.



86 BIBLIOGRAPHY

J. M. Hernández-Lobato and R. Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine
Learning, pages 1861–1869, 2015.

T. K. Ho. Random decision forests. In Proceedings of 3rd international conference on
document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American Statistical Association, 47(260):
663–685, 1952.

P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal
discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages
689–696. Curran Associates, Inc., 2009.

J. Jacod and P. Protter. Probability Essentials. Springer, New York, 2000.

D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniusis, B. Steudel,
and B. Schölkopf. Information-geometric approach to inferring causal directions.
Artificial Intelligence, (182-183):1–31, 2012.

M. Jørgensen and S. Hauberg. Isometric gaussian process latent variable model for
dissimilarity data, 2020.

M. Jørgensen, M. P. Deisenroth, and H. Salimbeni. Stochastic differential equations
with variational wishart diffusions. In International Conference on Machine
Learning, 2020.

M. Jørgensen and S. Hauberg. Reparametrization invariance in non-parametric causal
discovery, 2020.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations,
volume 23. Springer Science & Business Media, 2013.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems, pages 6402–6413, 2017.

K. L. Lange, R. J. A. Little, and J. M. G. Taylor. Robust statistical modeling using
the t distribution. Journal of the American Statistical Association, 84(408):881–896,
1989.

N. Lawrence. Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of machine learning research, 6(Nov):1783–
1816, 2005.



BIBLIOGRAPHY 87

N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the gp-lvm
through back constraints. In Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, page 513–520, New York, NY, USA, 2006. Association
for Computing Machinery.

Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series.
In The handbook of brain theory and neural networks, pages 255–258. MIT Press,
1998.

E. T. Lee and J. Wang. Statistical Methods for Survival Data Analysis, volume 476.
John Wiley & Sons, 2003.

J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science &
Business Media, 2007.

X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. Duvenaud. Scalable gradients for
stochastic differential equations. In Artificial Intelligence and Statistics, 2020.

X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh. Neural SDE: Stabilizing
neural ODE networks with stochastic noise. arXiv:1906.02355, 2019.

D. J. MacKay. Bayesian neural networks and density networks. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 354(1):73–80, 1995.

D. Madras, J. Atwood, and A. D’Amour. Detecting extrapolation with influence
functions. In ICML 2019 Workshop on Uncertainty & Robustness in Deep Learning,
2019.

B. B. Mandelbrot and J. W. V. Ness. Fractional brownian motions, fractional noises
and applications. SIAM Review, 10(4):422–437, 1968.

A. Mead. Review of the development of multidimensional scaling methods. Journal
of the Royal Statistical Society: Series D (The Statistician), 41(1):27–39, 1992.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing
cause from effect using observational data: Methods and benchmarks. Journal of
Machine Learning Research, (17):1–102, 2016.

E. Nadaraya. On non-parametric estimates of density functions and regression curves.
Theory of Probability & Its Applications, 10(1):186–190, 1965.

M. Nakagami. The m-distribution—a general formula of intensity distribution of rapid
fading. In Statistical Methods in Radio Wave Propagation, pages 3–36. Elsevier,
1960.

D. Nix and A. Weigend. Estimating the mean and variance of the target probability
distribution. In Proc. 1994 IEEE Int. Conf. Neural Networks, pages 55–60 vol.1.
IEEE, 1994.

P. Orbanz. Lecture notes on bayesian nonparametrics. Journal of Mathematical
Psychology, 56:1–12, 2012.



88 BIBLIOGRAPHY

J. Pearl. Causality: models, reasoning, and inference. Cambridge University Press,
2009.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference. MIT Press,
2017.

J. Quiñonero Candela and C. E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959,
2005.

C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

H. Reichenbach and M. Reichenbach. The Direction of Time. University of California
Press, 1991.

J. A. Rodriguez-Velazquez. Lexicographic metric spaces: Basic properties and the
metric dimension, 2018.

T. Salimans and D. A. Knowles. Fixed-form variational posterior approximation
through stochastic linear regression. Bayesian Analysis, 8(4):837–882, 2013.

H. Salimbeni and M. P. Deisenroth. Doubly stochastic variational inference for deep
Gaussian processes. In Advances in Neural Information Processing Systems, 2017.

S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to speed up sparse
gaussian process regression. Technical report, 2003.

M. Seeger, Y.-W. Teh, and M. Jordan. Semiparametric latent factor models. Technical
report, 2005.

B. Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems, 2006.

P. Spirtes, C. Glymour, R. Scheines, et al. Causation, prediction, and search. MIT
Press Books, 1, 2001.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A Global Geometric Framework
for Nonlinear Dimensionality Reduction. Science, 290(5500):2319, 2000.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
Artificial Intelligence and Statistics, 2009a.



BIBLIOGRAPHY 89

M. Titsias. Variational learning of inducing variables in sparse gaussian processes. In
Artificial Intelligence and Statistics, pages 567–574, 2009b.

M. Titsias and N. D. Lawrence. Bayesian gaussian process latent variable model. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pages 844–851, 2010.

A. Tosi, S. Hauberg, A. Vellido, and N. D. Lawrence. Metrics for Probabilistic
Geometries. In The Conference on Uncertainty in Artificial Intelligence (UAI),
July 2014.

N. Twomey, M. Kozłowski, and R. Santos-Rodríguez. Neural ODEs with stochastic
vector field mixtures. arXiv:1905.09905, 2019.

B. Tzen and M. Raginsky. Neural stochastic differential equations: deep latent
Gaussian models in the diffusion limit. arXiv:1905.09883, 2019.

R. Urtasun, D. J. Fleet, A. Geiger, J. Popović, T. J. Darrell, and N. D. Lawrence.
Topologically-constrained latent variable models. In Proceedings of the 25th
International Conference on Machine Learning, pages 1080–1087, 2008.

I. Ustyuzhaninov, I. Kazlauskaite, C. H. Ek, and N. Campbell. Monotonic gaussian
process flows. volume 108 of Proceedings of Machine Learning Research, pages 3057–
3067, Online, 2020. PMLR.

A. G. Wilson and Z. Ghahramani. Generalised Wishart processes. arXiv:1101.0240,
2010.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In
Artificial intelligence and statistics, pages 370–378, 2016.

J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth.
Efficiently sampling functions from gaussian process posteriors. arXiv preprint
arXiv:2002.09309, 2020.

J. Zhang and P. Spirtes. Detection of unfaithfulness and robust causal inference. Minds
and Machines, 18(2):239–271, 2008.

S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen. Cautionary tales on air-
quality improvement in Beijing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473, 2017.

N. Zlatanov, Z. Hadzi-Velkov, and G. Karagiannidis. An efficient approximation to
the correlated nakagami-m sums and its application in equal gain diversity receivers.
IEEE Transactions on Wireless Communications, 9(1):302–310, Jan 2010.



90 BIBLIOGRAPHY



Paper A

Reliable training and
estimation of variance

networks



Reliable training and estimation of variance networks

Nicki S. Detlefsen∗ †
nsde@dtu.dk

Martin Jørgensen* †

marjor@dtu.dk
Søren Hauberg †

sohau@dtu.dk

Abstract

We propose and investigate new complementary methodologies for estimating
predictive variance networks in regression neural networks. We derive a locally
aware mini-batching scheme that results in sparse robust gradients, and we show
how to make unbiased weight updates to a variance network. Further, we formulate
a heuristic for robustly fitting both the mean and variance networks post hoc. Finally,
we take inspiration from posterior Gaussian processes and propose a network
architecture with similar extrapolation properties to Gaussian processes. The
proposed methodologies are complementary, and improve upon baseline methods
individually. Experimentally, we investigate the impact of predictive uncertainty on
multiple datasets and tasks ranging from regression, active learning and generative
modeling. Experiments consistently show significant improvements in predictive
uncertainty estimation over state-of-the-art methods across tasks and datasets.

1 Introduction

The quality of mean predictions has dramatically increased in the last decade with the rediscovery of
neural networks [LeCun et al., 2015]. The predictive variance, however, has turned out to be a more
elusive target, with established solutions being subpar. The general finding is that neural networks
tend to make overconfident predictions [Guo et al., 2017] that can be harmful or offensive [Amodei
et al., 2016]. This may be explained by neural networks being general function estimators that does
not come with principled uncertainty estimates. Another explanation is that variance estimation is a
fundamentally different task than mean estimation, and that the tools for mean estimation perhaps do
not generalize. We focus on the latter hypothesis within regression.

Figure 1: Max. likelihood fit
of N (µ(x), σ2(x)) to data.

To illustrate the main practical problems in variance estimation, we
consider a toy problem where data is generated as y = x · sin(x) +
0.3 ·ε1+0.3 ·x ·ε2, with ε1, ε2 ∼ N (0, 1) and x is uniform on [0, 10]
(Fig. 1). As is common, we do maximum likelihood estimation of
N (µ(x), σ2(x)), where µ and σ2 are neural nets. While µ provides
an almost perfect fit to the ground truth, σ2 shows two problems: σ2

is significantly underestimated and σ2 does not increase outside the
data support to capture the poor mean predictions.

These findings are general (Sec. 4), and alleviating them is the main
purpose of the present paper. We find that this can be achieved by a
combination of methods that 1) change the usual mini-batching to be location aware; 2) only optimize
variance conditioned on the mean; 3) for scarce data, we introduce a more robust likelihood function;
and 4) enforce well-behaved interpolation and extrapolation of variances. Points 1 and 2 are achieved
through changes to the training algorithm, while 3 and 4 are changes to model specifications. We
empirically demonstrate that these new tools significantly improve on state-of-the-art across datasets
in tasks ranging from regression to active learning, and generative modeling.
∗Equal contribution
†Section for Cognitive Systems, Technical University of Denmark

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



2 Related work

Gaussian processes (GPs) are well-known function approximators with built-in uncertainty estima-
tors [Rasmussen and Williams, 2006]. GPs are robust in settings with a low amount of data, and
can model a rich class of functions with few hyperparameters. However, GPs are computationally
intractable for large amounts of data and limited by the expressiveness of a chosen kernel. Advances
like sparse and deep GPs [Snelson and Ghahramani, 2006, Damianou and Lawrence, 2013] partially
alleviate this, but neural nets still tend to have more accurate mean predictions.

Uncertainty aware neural networks model the predictive mean and variance as two separate neural
networks, often as multi-layer perceptrons. This originates with the work of Nix and Weigend [1994]
and Bishop [1994]; today, the approach is commonly used for making variational approximations
[Kingma and Welling, 2013, Rezende et al., 2014], and it is this general approach we investigate.

Bayesian neural networks (BNN) [MacKay, 1992] assume a prior distribution over the network
parameters, and approximate the posterior distribution. This gives direct access to the approximate
predictive uncertainty. In practice, placing an informative prior over the parameters is non-trivial.
Even with advances in stochastic variational inference [Kingma and Welling, 2013, Rezende et al.,
2014, Hoffman et al., 2013] and expectation propagation [Hernández-Lobato and Adams, 2015], it is
still challenging to perform inference in BNNs.

Ensemble methods represent the current state-of-the-art. Monte Carlo (MC) Dropout [Gal and
Ghahramani, 2016] measure the uncertainty induced by Dropout layers [Hinton et al., 2012] arguing
that this is a good proxy for predictive uncertainty. Deep Ensembles [Lakshminarayanan et al.,
2017] form an ensemble from multiple neural networks trained with different initializations. Both
approaches obtain ensembles of correlated networks, and the extent to which this biases the predictive
uncertainty is unclear. Alternatives include estimating confidence intervals instead of variances
[Pearce et al., 2018], and gradient-based Bayesian model averaging [Maddox et al., 2019].

Applications of uncertainty include reinforcement learning, active learning, and Bayesian optimiza-
tion [Szepesvári, 2010, Huang et al., 2010, Frazier, 2018]. Here, uncertainty is the crucial element
that allows for systematically making a trade-off between exploration and exploitation. It has also
been shown that uncertainty is required to learn the topology of data manifolds [Hauberg, 2018].

The main categories of uncertainty are epistemic and aleatoric uncertainty [Kiureghian and
Ditlevsen, 2009, Kendall and Gal, 2017]. Aleatoric uncertainty is induced by unknown or un-
measured features, and, hence, does not vanish in the limit of infinite data. Epistemic uncertainty
is often referred to as model uncertainty, as it is the uncertainty due to model limitations. It is this
type of uncertainty that Bayesian and ensemble methods generally estimate. We focus on the overall
predictive uncertainty, which reflects both epistemic and aleatoric uncertainty.

3 Methods

The opening remarks (Sec. 1) highlighted two common problems that appear when µ and σ2 are
neural networks. In this section we analyze these problems and propose solutions.

Preliminaries. We assume that datasets D = {xi, yi}Ni=1 contain i.i.d. observations yi ∈ R,xi ∈
RD. The targets yi are assumed to be conditionally Gaussian, pθ(y|x) = N (y|µ(x), σ2(x)), where
µ and σ2 are continuous functions parametrized by θ = {θµ, θσ2}. The maximum likelihood estimate
(MLE) of the variance of i.i.d. observations {yi}Ni=1 is 1

N−1
∑
i(yi − µ̂)2, where µ̂ is the sample

mean. This MLE does not exist based on a single observation, unless the mean µ is known, i.e. the
mean is not a free parameter. When yi is Gaussian, the residuals (yi − µ)2 are gamma distributed.

3.1 A local likelihood model analysis

By assuming that both µ and σ2 are continuous functions, we are implicitly saying that σ2(x) is
correlated with σ2(x+ δ) for sufficiently small δ, and similar for µ. Consider the local likelihood
estimation problem [Loader, 1999, Tibshirani and Hastie, 1987] at a point xi,

log p̃θ(yi|xi) =
N∑

j=1

wj(xi) log pθ(yj |xj), (1)

2



where wj is a function that declines as ‖xj − xi‖ increases, implying that the local likelihood at xi
is dependent on the points nearest to xi. Notice p̃θ(yi|xi) = pθ(yi|xi) if wj(xi) = 1i=j . Consider,
with this w, a uniformly drawn subsample (i.e. a standard mini-batch) of the data {xk}Mk=1 and its
corresponding stochastic gradient of Eq. 1 with respect to θσ2 . If for a point, xi, no points near it
are in the subsample, then no other point will influence the gradient of σ2(xi), which will point in
the direction of the MLE, that is highly uninformative as it does not exist unless µ(xi) is known.
Local data scarcity, thus, implies that while we have sufficient data for fitting a mean, locally we
have insufficient data for fitting a variance. Essentially, if a point is isolated in a mini-batch, all
information it carries goes to updating µ and none is present for σ2.

If we do not use mini-batches, we encounter that gradients wrt. θµ and θσ2 will both be scaled with
1

2σ2(x) meaning that points with small variances effectively have higher learning rates [Nix and
Weigend, 1994]. This implies a bias towards low-noise regions of data.

3.2 Horvitz-Thompson adjusted stochastic gradients

We will now consider a solution to this problem within the local likelihood framework, which will
give us a reliable, but biased, stochastic gradient for the usual (nonlocal) log-likelihood. We will then
show how this can be turned into an unbiased estimator.

If we are to add some local information, giving more reliable gradients, we should choose a w in Eq.1
that reflects this. Assume for simplicity that wj(xi) = 1‖xi−xj‖<d for some d > 0. The gradient
of log p̃θ(y|xi) will then be informative, as more than one observation will contribute to the local
variance if d is chosen appropriately. Accordingly, we suggest a practical mini-batching algorithm
that samples a random point xj and we let the mini-batch consist of the k nearest neighbors of xj .3
In order to allow for more variability in a mini-batch, we suggest sampling m points uniformly,
and then sampling n points among the k nearest neighbors of each of the m initially sampled
points. Note that this is a more informative sample, as all observations in the sample are likely to
influence the same subset of parameters in θ, effectively increasing the degrees of freedom4, hence
the quality of variance estimation. In other words, if the variance network is sufficiently expressive,
our Monte Carlo gradients under this sampling scheme are of smaller variation and more sparse. In
the supplementary material, we empirically show that this estimator yields significantly more sparse
gradients, which results in improved convergence. Pseudo-code of this sampling-scheme, can be
found in the supplementary material.

While such a mini-batch would give rise to an informative stochastic gradient, it would not be an
unbiased stochastic gradient of the (nonlocal) log-likelihood. This can, however, be adjusted by using
the Horvitz-Thompson (HT) algorithm [Horvitz and Thompson, 1952], i.e. rescaling the log-likelihood
contribution of each sample xj by its inclusion probability πj . With this, an unbiased estimate of the
log-likelihood (up to an additive constant) becomes

N∑

i=1

{
−1

2
log(σ2(xi))−

(yi − µ(xi))2
2σ2(xi)

}
≈
∑

xj∈O

1

πj

{
−1

2
log(σ2(xj))−

(yj − µ(xj))2
2σ2(xj)

}
(2)

where O denotes the mini-batch. With the nearest neighbor mini-batching, the inclusion probabilities
can be calculated as follows. The probability that observation j is in the sample is n/k if it is among
the k nearest neighbors of one of the initial m points, which are chosen with probability m/N , i.e.

πj =
m

N

N∑

i=1

n

k
1j∈Ok(i), (3)

where Ok(i) denotes the k nearest neighbors of xi.

Computational costs The proposed sampling scheme requires an upfront computational cost of
O(N2D) before any training can begin. We stress that this is pre-training computation and not

3By convention, we say that the nearest neighbor of a point is the point itself.
4Degrees of freedom here refers to the parameters in a Gamma distribution – the distribution of variance

estimators under Gaussian likelihood. Degrees of freedom in general is a quite elusive quantity in regression
problems.
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updated during training. The cost is therefore relative small, compared to training a neural network
for small to medium size datasets. Additionally, we note that the search algorithm does not have to
be precise, and we could therefore take advantage of fast approximate nearest neighbor algorithms
[Fu and Cai, 2016].

3.3 Mean-variance split training

The most common training strategy is to first optimize θµ assuming a constant σ2, and then proceed
to optimize θ = {θµ, θσ2} jointly, i.e. a warm-up of µ. As previously noted, the MLE of σ2 does
not exist when only a single observation is available and µ is unknown. However, the MLE does
exist when µ is known, in which case it is σ̂2(xi) = (yi − µ(xi))2, assuming that the continuity of
σ2 is not crucial. This observation suggests that the usual training strategy is substandard as σ2 is
never optimized assuming µ is known. This is easily solved: we suggest to never updating µ and σ2

simultaneously, i.e. only optimize µ conditioned on σ2, and vice versa. This reads as sequentially
optimizing pθ(y|θµ) and pθ(y|θσ2), as we under these conditional distributions we may think of µ
and σ2 as known, respectively. We will refer to this as mean-variance split training (MV).

3.4 Estimating distributions of variance

When σ2(xi) is influenced by few observations, underestimation is still likely due to the left skewness
of the gamma distribution of σ̂2

i = (yi−µ(xi))2. As always, when in a low data regime, it is sensible
to be Bayesian about it; hence instead of point estimating σ̂2

i we seek to find a distribution. Note
that we are not imposing a prior, we are training the parameters of a Bayesian model. We choose
the inverse-Gamma distribution, as this is the conjugate prior of σ2 when data is Gaussian. This
means θσ2 = {θα, θβ} where α, β > 0 are the shape and scale parameters of the inverse-Gamma
respectively. So the log-likelihood is now calculated by integrating out σ2

log pθ(yi) = log

∫
N (yi|µi, σ2

i )dσ
2
i = log tµi,αi,βi

(yi), (4)

where σ2
i ∼ INV-GAMMA(αi, βi) and αi = α(xi), βi = β(xi) are modeled as neural networks.

Having an inverse-Gamma prior changes the predictive distribution to a located-scaled5 Student-t
distribution, parametrized with µ, α and β. Further, the t-distribution is often used as a replacement
of the Gaussian when data is scarce and the true variance is unknown and yields a robust regression
[Gelman et al., 2014, Lange et al., 1989]. We let α and β be neural networks that implicitly determine
the degrees of freedom and the scaling of the distribution. Recall the higher the degrees of freedom,
the better the Gaussian approximation of the t-distribution.

3.5 Extrapolation architecture

If we evaluate the local log-likelihood (Eq. 1) at a point x0 far away from all data points, then
the weights wi(x0) will all be near (or exactly) zero. Consequently, the local log-likelihood is
approximately 0 regardless of the observed value y(x0), which should be interpreted as a large
entropy of y(x0). Since we are working with Gaussian and t-distributed variables, we can recreate
this behavior by exploiting the fact that entropy is only an increasing function of the variance. We can
re-enact this behavior by letting the variance tend towards an a priori determined value η if x0 tends
away from the training data. Let {ci}Li=1 be points in RD that represent the training data, akin to
inducing points in sparse GPs [Snelson and Ghahramani, 2006]. Then define δ(x0) = mini ‖ci−x0‖
and

σ̂2(x0) =
(
1− ν(δ(x0))

)
σ̂2
θ + ην(δ(x0)), (5)

where ν : [0,∞) 7→ [0, 1] is a surjectively increasing function. Then the variance estimate will go to
η as δ →∞ at a rate determined by ν. In practice, we choose ν to be a scaled-and-translated sigmoid
function: ν(x) = sigmoid((x+ a)/γ), where γ is a free parameter we optimize during training and
a ≈ −6.9077γ to ensure that ν(0) ≈ 0. The inducing points ci are initialized with k-means and
optimized during training. This choice of architecture is similar to that attained by posterior Gaussian
processes when the associated covariance function is stationary. It is indeed the behavior of these
established models that we aim to mimic with Eq. 5.

5This means y ∼ F , where F = µ+σt(ν). The explicit density can be found in the supplementary material.
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4 Experiments

4.1 Regression

To test our methodologies we conduct multiple experiments in various settings. We compare our
method to state-of-the-art methods for quantifying uncertainty: Bayesian neural network (BNN)
[Hernández-Lobato and Adams, 2015], Monte Carlo Dropout (MC-Dropout) [Gal and Ghahramani,
2016] and Deep Ensembles (Ens-NN) [Lakshminarayanan et al., 2017]. Additionally we compare to
two baseline methods: standard mean-variance neural network (NN) [Nix and Weigend, 1994] and
GPs (sparse GPs (SGP) when standard GPs are not applicable) [Rasmussen and Williams, 2006]. We
refer to our own method(s) as Combined, since we apply all the methodologies described in Sec. 3.
Implementation details and code can be found in the supplementary material. Strict comparisons
of the models should be carefully considered; having two seperate networks to model mean and
variance seperately (as NN, Ens-NN and Combined) means that all the predictive uncertainty, i.e. both
aleatoric and episteminc, is modeled by the variance networks alone. BNN and MC-Dropout have a
higher emphasis on modeling epistemic uncertainty, while GPs have the cleanest separation of noise
and model uncertainty estimation. Despite the methods quantifying different types of uncertainty,
their results can still be ranked by test set log-likelihood, which is a proper scoring function.

Toy regression. We first return to the toy problem of Sec. 1, where we consider 500 points from
y = x · sin(x) + 0.3 · ε1 + 0.3 · x · ε2, with ε1, ε2 ∼ N (0, 1). In this example, the variance is
heteroscedastic, and models should estimate larger variance for larger values of x. The results6 can
be seen in Figs. 2 and 3. Our approach is the only one to satisfy all of the following: capture the
heteroscedasticity, extrapolate high variance outside data region and not underestimating within.

Figure 2: From top left to bottom right: GP, NN,
BNN, MC-Dropout, Ens-NN, Combined.
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Figure 3: Standard deviation estimates
as a function of x.

Variance calibration. To our knowledge, no benchmark for quantifying variance estimation exists.
We propose a simple dataset with known uncertainty information. More precisely, we consider
weather data from over 130 years.7 Each day the maximum temperature is measured, and the
uncertainty is then given as the variance in temperature over the 130 years. The fitted models can
be seen in Fig. 4. Here we measure performance by calculating the mean error in uncertainty:
Err = 1

N

∑N
i=1 |σ2

true(xi)− σ2
est(xi)|. The numbers are reported above each fit. We observe that our

Combined model achieves the lowest error of all the models, closely followed by Ens-NN and GP.
Both NN, BNN and MC-Dropout all severely underestimate the uncertainty.

Ablation study. To determine the influence of each methodology from Sec. 3, we experimented
with four UCI regression datasets (Fig. 5). We split our contributions in four: the locality sampler
(LS), the mean-variance split (MV), the inverse-gamma prior (IG) and the extrapolating architecture
(EX). The combined model includes all four tricks. The results clearly shows that LS and IG
methodologies has the most impact on test set log likelihood, but none of the methodologies perform
worse than the baseline model. Combined they further improves the results, indicating that the
proposed methodologies are complementary.

6The standard deviation plotted for Combined, is the root mean of the inverse-Gamma.
7https://mrcc.illinois.edu/CLIMATE/Station/Daily/StnDyBTD2.jsp
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Figure 4: Weather data with uncertainties. Dots are datapoints, green lines are the true uncertainty,
blue curves are mean predictions and the blue shaded areas are the estimated uncertainties.
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Figure 5: The complementary methodologies from Sec. 3 evaluated on UCI benchmark datasets.

UCI benchmark. We now follow the experimental setup from Hernández-Lobato and Adams
[2015], by evaluating models on a number of regression datasets from the UCI machine learning
database. Additional to the standard benchmark, we have added 4 datasets. Test set log-likelihood can
be seen in Table 1, and the corresponding RMSE scores can be found in the supplementary material.

Our Combined model performs best on 10 of the 13 datasets. For the small Boston and Yacht datasets,
the standard GP performs the best, which is in line with the experience that GPs perform well when
data is scarce. On these datasets our model is the best-performing neural network. On the Energy
and Protein datasets Ens-NN perform the best, closely followed by our Combined model. One clear
advantage of our model compared to Ens-NN is that we only need to train one model, whereas
Ens-NN need to train 5+ (see the supplementary material for training times for each model). The
worst performing model in all cases is the baseline NN model, which clearly indicates that the usual
tools for mean estimation does not carry over to variance estimation.

Active learning. The performance of active learning depends on predictive uncertainty [Settles,
2009], so we use this to demonstrate the improvements induced by our method. We use the same
network architectures and datasets as in the UCI benchmark. Each dataset is split into: 20% train, 60%
pool and 20% test. For each active learning iteration, we first train a model, evaluate the performance
on the test set and then estimate uncertainty for all datapoints in the pool. We then select the n points
with highest variance (corresponding to highest entropy [Houlsby et al., 2012]) and add these to the

N D GP SGP NN BNN MC-Dropout Ens-NN Combined
Boston 506 13 −1.76± 0.3−1.85± 0.25−3.64± 0.09−2.59± 0.11−2.51± 0.31 −2.45± 0.25 −2.09± 0.09
Carbon 10721 7 - 3.74± 0.53−2.03± 0.14 −1.1± 1.76−1.08± 0.05 −0.44± 7.28 4.35± 0.16
Concrete 1030 8 −2.13± 0.14−2.29± 0.12−4.23± 0.07−3.31± 0.05−3.11± 0.12 −3.06± 0.32−1.78± 0.04
Energy 768 8 −1.85± 0.34−2.22± 0.15−3.78± 0.04−2.07± 0.08−2.01± 0.11−1.48± 0.31 −1.68± 0.13
Kin8nm 8192 8 - 2.01± 0.02−0.08± 0.02 0.95± 0.08 0.95± 0.15 1.18± 0.03 2.49± 0.07
Naval 11934 16 - - 3.47± 0.21 3.71± 0.05 3.80± 0.09 5.55± 0.05 7.27± 0.13
Power plant 9568 4 - −1.9± 0.03−4.26± 0.14−2.89± 0.01−2.89± 0.14 −2.77± 0.04−1.19± 0.03
Protein 45730 9 - -−2.95± 0.09−2.91± 0.00−2.93± 0.14−2.80± 0.02−2.83± 0.05
Superconduct 21263 81 -−4.07± 0.01−4.92± 0.10−3.06± 0.14−2.91± 0.19 −3.01± 0.05−2.43± 0.05
Wine (red) 1599 11 0.96± 0.18−0.08± 0.01−1.19± 0.11−0.98± 0.01−0.94± 0.01 −0.93± 0.09 1.21± 0.23
Wine (white) 4898 11 -−0.14± 0.05−1.29± 0.09−1.41± 0.17−1.26± 0.01 −0.99± 0.06 0.40± 0.42
Yacht 308 7 0.16± 1.22−0.38± 0.32−4.12± 0.17−1.65± 0.05−1.55± 0.12 −1.18± 0.21−0.07± 0.05
Year 515345 90 - -−5.21± 0.87−3.97± 0.34−3.78± 0.01 −3.42± 0.02−3.01± 0.14

Table 1: Dataset characteristics and tests set log-likelihoods for the different methods. A - indicates
the model was infeasible to train. Bold highlights the best results.
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training set. We set n = 1% of the initial pool size. This is repeated 10 times, such that the last model
is trained on 30%. We repeat this on 10 random training-test splits to compute standard errors.

Fig. 6,show the evolution of average RMSE for each method during the data collection process for
the Boston, Superconduct and Wine (white) datasets (all remaining UCI datasets are visualized in the
supplementary material). In general, we observe two trends. For some datasets we observe that our
Combined model outperforms all other models, achieving significantly faster learning. This indicates
that our model is better at predicting the uncertainty of the data in the pool set. On datasets where the
sampling process does not increase performance, we are on par with other models.

Figure 6: Average test set RMSE and standard errors in active learning. The remaining datasets are
shown in the supplementary material.

4.2 Generative models

To show a broader application of our approach, we also explore it in the context of generative
modeling. We focus on variational autoencoders (VAEs) [Kingma and Welling, 2013, Rezende et al.,
2014] that are popular deep generative models. A VAE model the generative process:

p(x)=

∫
pθ(x|z)p(z)dz, pθ(x|z)=N

(
x|µθ(z), σ2

θ(z)
)

or pθ(x|z)=B
(
x|µθ(z)

)
, (6)

where p(z) = N (0, Id). This is trained by introducing a variational approximation
qφ(z|x) = N (z|µφ(x), σ2

φ(x)) and then jointly training pθ and qφ. For our purposes, it
suffcient to note that a VAE estimates both a mean and a variance function. Thus using standard
training methods, the same problems arise as in the regression setting. Mattei and Frellsen [2018]
have recently shown that estimating a VAE is ill-posed unless the variance is bounded from below.
In the literature, we often find that

1. Variance networks are avoided by using a Bernoulli distribution, even if data is not binary.

2. Optimizing VAEs with a Gaussian posterior is considerably harder than the Bernoulli case. To
overcome this, the variance is often set to a constant e.g. σ2(z) = 1. The consequence is that the
log-likelihood reconstruction term in the ELBO collapses into an L2 reconstruction term.

3. Even though the generative process is given by Eq. 6, samples shown in the literature are often
reduced to x̃ = µ(z), z ∼ N (0, I). This is probably due to the wrong/meaningless variance term.

We aim to fix this by training the posterior variance σ2
θ(z) with our Combined method. We do not

change the encoder variance σ2
φ(x) and leave this to future study.

Artificial data. We first evaluate the benefits of more reliable variance networks in VAEs on
artificial data. We generate data inspired by the two moon dataset8, which we map into four
dimensions. The mapping is thoroughly described in the supplementary material, and we emphasize
that we have deliberately used mappings that MLP’s struggle to learn, thus with a low capacity
network the only way to compensate is to learn a meaningful variance function.

In Fig. 7 we plot pairs of output dimensions using 5000 generated samples. For all pairwise
combinations we refer to the supplementary material. We observe that samples from our Comb-VAE
capture the data distribution in more detail than a standard VAE. For VAE the variance seems to be

8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.
html
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Figure 7: The ground truth and generated distributions.
Top: x1 vs. x2. Bottom: x2 vs x3.
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Figure 8: Variance esti-
mates in latent space for
standard VAE (top) and
our Comb-VAE (bottom).
Blue points are the encoded
training data.

MNIST FashionMNIST CIFAR10 SVHN

ELBO VAE 2053.01 ± 1.60 1506.31 ± 2.71 1980.84 ± 3.32 3696.35 ± 2.94
Comb-VAE 2152.31 ± 3.32 1621.29 ± 7.23 2057.32 ± 8.13 3701.41 ± 5.84

log p(x)
VAE 1914.77 ± 2.15 1481.38 ± 3.68 1809.43 ± 10.32 3606.28 ± 2.75
Comb-VAE 2018.37 ± 4.35 1567.23 ± 4.82 1891.39 ± 20.21 3614.39 ± 7.91

Table 2: Generative modeling of 4 datasets. For each dataset we report training ELBO and test set
log-likelihood. The standard errors are calculated over 3 trained models with random initialization.

underestimated, which is similar to the results from regression. The poor sample quality of a standard
VAE can partially be explained by the arbitrariness of decoder variance function σ2(z) away from
data. In Fig. 8, we calculated the accumulated variance

∑D
j=1 σ

2
j (z) over a grid of latent points.

We clearly see that for the standard VAE, the variance is low where we have data and arbitrary away
from data. However, our method produces low-variance region where the two half moons are and
a high variance region away from data. We note that Arvanitidis et al. [2018] also dealt with the
problem of arbitrariness of the decoder variance. However their method relies on post-fitting of the
variance, whereas ours is fitted during training. Additionally, we note that [Takahashi et al., 2018]
also successfully modeled the posterior of a VAE as a Student t-distribution similar to our proposed
method, but without the extrapolation and different training procedure.

Image data. For our last set of experiments we fitted a standard VAE and our Comb-VAE to
four datasets: MNIST, FashionMNIST, CIFAR10, SVHN. We want to measure whether there is an
improvement to generative modeling by getting better variance estimation. The details about network
architecture and training can be found in the supplementary material. Training set ELBO and test
set log-likelihoods can be viewed in Table 2. We observe on all datasets that, on average tighter
bounds and higher log-likelihood are achieved, indicating that we better fit the data distribution. We
quantitatively observe (see Fig. 9) that variance has a more local structure for Comb-VAE and that
the variance reflects the underlying latent structure.

5 Discussion & Conclusion

While variance networks are commonly used for modeling the predictive uncertainty in regression
and in generative modeling, there have been no systematic studies of how to fit these to data. We
have demonstrated that tools developed for fitting mean networks to data are subpar when applied to

8



Figure 9: Generated MNIST images on a grid in latent space using the standard variance network
(left) and proposed variance network (right).

variance estimation. The key underlying issue appears to be that it is not feasible to estimate both a
mean and a variance at the same time, when data is scarce.

While it is beneficial to have separate estimates of both epistemic and aleatoric uncertainty, we have
focused on predictive uncertainty, which combine the two. This is a lesser but more feasible goal.

We have proposed a new mini-batching scheme that samples locally to ensure that variances are better
defined during model training. We have further argued that variance estimation is more meaningful
when conditioned on the mean, which implies a change to the usual training procedure of joint
mean-variance estimation. To cope with data scarcity we have proposed a more robust likelihood that
model a distribution over the variance. Finally, we have highlighted that variance networks need to
extrapolate differently from mean networks, which implies architectural differences between such
networks. We specifically propose a new architecture for variance networks that ensures similar
variance extrapolations to posterior Gaussian processes from stationary priors.

Our methodologies depend on algorithms that computes Euclidean distances. Since these often break
down in high dimensions, this indicates that our proposed methods may not be suitable for high
dimensional data. Since we mostly rely on nearest neighbor computations, that empirical are known
to perform better in high dimensions, our methodologies may still work in this case. Interestingly, the
very definition of variance is dependent on Euclidean distance and this may indicate that variance
is inherently difficult to estimate for high dimensional data. This could possible be circumvented
through a learned metric.

Experimentally, we have demonstrated that proposed methods are complementary and provide
significant improvements over state-of-the-art. In particular, on benchmark data we have shown
that our method improves upon the test set log-likelihood without improving the RMSE, which
demonstrate that the uncertainty is a significant improvement over current methods. Another indicator
of improved uncertainty estimation is that our method speeds up active learning tasks compared
to state-of-the-art. Due to the similarities between active learning, Bayesian optimization, and
reinforcement learning, we expect that our approach carries significant value to these fields as well.
Furthermore, we have demonstrated that variational autoencoders can be improved through better
generative variance estimation. Finally, we note that our approach is directly applicable alongside
ensemble methods, which may further improve results.
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Abstract
We present a Bayesian non-parametric way of in-
ferring stochastic differential equations for both
regression tasks and continuous-time dynamical
modelling. The work has high emphasis on the
stochastic part of the differential equation, also
known as the diffusion, and modelling it by means
of Wishart processes. Further, we present a semi-
parametric approach that allows the framework
to scale to high dimensions. This successfully
lead us onto how to model both latent and auto-
regressive temporal systems with conditional het-
eroskedastic noise. We provide experimental ev-
idence that modelling diffusion often improves
performance and that this randomness in the dif-
ferential equation can be essential to avoid over-
fitting.

1. Introduction
An endeared assumption to make when modelling multi-
variate phenomena with Gaussian processes (GPs) is that
of independence between processes, i.e. every dimension
of a multivariate phenomenon is modelled independently.
Consider the case of a two-dimensional temporal process
xt evolving as

xt := f(xt−1) + εt, (1)

where f(xt−1) = (f1(xt−1), f2(xt−1))>, f1 and f2 inde-
pendent, and εt ∼ N (0, σ2I). This model is commonly
used in the machine learning community and is easy to use
and understand, but for many real-world cases the noise is
too simplistic. In this paper, we will investigate the noise
term εt and also make it dependent on the state xt−1. This
is also known as heteroskedastic noise. We will refer to the
sequence of εt as the diffusion or process noise.

1Department for Mathematics and Computer Science, Technical
University of Denmark 2Department of Computer Science, Uni-
versity College London 3G-Research. Correspondence to: Martin
Jørgensen <marjor@dtu.dk>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Why model the process noise? Assume that in the example
above, the two states represent meteorological measure-
ments: rainfall and wind speed. Both are influenced by
confounders, such as atmospheric pressure, which are not
measured directly. This effect can in the case of the model
in (1) only be modelled through the diffusion ε. Moreover,
wind and rain may not correlate identically for all states of
the confounders.

Dynamical modelling with focus in the noise-term is not
a new area of research. The most prominent one is the
Auto-Regressive Conditional Heteroskedasticity (ARCH)
model (Engle, 1982), which is central to scientific fields
like econometrics, climate science and meteorology. The
approach in these models is to estimate large process noise
when the system is exposed to a shock, i.e. an unforeseen
significant change in states. Thus, it does not depend on the
value of some state, but rather on a linear combination of
previous states.

In this paper, we address this shortcoming and introduce
a model to handle the process noise by the use of Wishart
processes. Through this, we can sample covariance matrices
dependent on the input state. This allows the system to
evolve as a homogeneous system rather than independent
sequences. By doing so, we can avoid propagating too
much noise—which can often be the case with diagonal
covariances—and potentially improve on modelling longer-
range dependencies. Volatility modelling with GPs has
been considered by Wu et al. (2014); Wilson & Ghahramani
(2010); Heaukulani & van der Wilk (2019).

For regression tasks, our model is closely related to several
recent works exploring continuous-time deep neural net-
works (E, 2017; Haber & Ruthotto, 2017; Chen et al., 2018).
Here the notion of depth is no longer a discrete quantity (i.e.
the number of hidden layers), but an interval on which a
continuous flow is defined. In this view, continuous-time
learning takes residual networks (He et al., 2016) to their in-
finite limit, while remaining computationally feasible. The
flow, parameterized by a differential equation, allows for
time-series modelling, even with temporal observations that
are not equidistant.

This line of work has been extended with stochastic equiv-
alents (Twomey et al., 2019; Tzen & Raginsky, 2019;
Liu et al., 2019; Li et al., 2020), and the work by
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Andreas & Kandemir (2019), who model the drift and dif-
fusion of an SDE with Bayesian neural networks. These
approaches make the framework more robust, as the original
approach can fail even on simple tasks (Dupont et al., 2019).

The work that inspired our model most was by Hegde et al.
(2019). They model the random field that defines the SDE
with a Gaussian field. They consider regression and clas-
sification problems. To this end, they can take deep GPs
(Damianou & Lawrence, 2013; Salimbeni & Deisenroth,
2017) to their ‘infinite limit’ while avoiding their degener-
acy discussed by Duvenaud et al. (2014).

Our main focus throughout this paper lies on the stochastic-
ity of the flow, what impact it has and to which degree it can
be tamed or manipulated to improve overall performance.
Contributions:

• A model that unifies theory from conditional het-
eroskedastic dynamics, stochastic differential equations
(SDEs) and regression. We show how to perform varia-
tional inference in this model.

• A scalable approach to extend the methods to high-
dimensional input without compromising with inter-
dimensional independence assumptions.

2. Background
In this section, we give an overview of the relevant material
on GPs, Wishart processes, and SDEs.

2.1. Gaussian Processes

A Gaussian process (GP) is a distribution over func-
tions f : Rd → RD, satisfying that for any finite set
of points X :=

(
x1, . . . ,xN

)> ∈ RN×d, the outputs(
f(x1), . . . , f(xN )

)> ∈ RN×D are jointly Gaussian dis-
tributed. A GP is fully determined by a mean function µ :
Rd → RD and a covariance function c : Rd×Rd → RD×D.
This notation is slightly unorthodox, and we will elaborate.

The usual convention when dealing with multi-output GPs
(i.e. D > 1) is to assume D i.i.d. processes that share
the same covariance function (Álvarez & Lawrence, 2011),
which equivalently can be done by choosing the covari-
ance matrix K = k(X,X) ⊗ ID, where ⊗ denotes
the Kronecker product and k is a covariance function
for univariate output. For ease of notation we shall use
kD(a, b) := k(a, b)⊗ ID; that is, k(a, b) returns a kernel
matrix of dimension number of rows in a times the num-
ber of rows in b. This corresponds to the assumption of
independence between output dimensions. Furthermore, we
write f := f(X), µ := vec(µ(X)) and denote by K the
ND ×ND-matrix with Ki,j = kD(xi,xj). Then we can
write in short p(f) = N (µ,K).

As the number N of training data points gets large, the
size of K becomes a challenge as well, due to a re-
quired inversion during training/prediction. To circumvent
this, we consider sparse (or low-rank) GP methods. In
this respect, we choose M auxiliary inducing locations
Z =

(
z1, . . . ,zM

)> ∈ RM×d, and define their func-
tion values u := f(Z) ∈ RM×D. Since any finite set
of function values are jointly Gaussian, p(f ,u) is Gaussian
as well, and we can write p(f ,u) = p(f |u)p(u), where
p(f |u) = N (µ̃, K̃) with

µ̃ = µ+α>vec(u− µ(Z)), (2)

K̃ = kD(X,X)−α>kD(Z,Z)α, (3)

where α = kD(X,Z)kD(Z,Z)−1. Here it becomes evi-
dent why this is computationally attractive, as we only have
to deal with the inversion of kD(Z,Z), which due to the
structure, only requires inversion of k(Z,Z) of sizeM×M .
This is opposed to a matrix of size ND ×ND had we not
used the low-rank approximation and independence of GPs.

We will consider variational inference to marginalise u (Tit-
sias, 2009). Throughout the paper, we will choose our
variational posterior to be q(f ,u) = p(f |u)q(u), where
q(u) := N (m,S), similar to Hensman et al. (2013).
Further, q factorises over the dimensions, i.e. q(u) =∏D
j=1N (mj ,Sj), wherem = (m1, . . . ,mD) and S is a

block-diagonal MD×MD-matrix, with block-diagonal en-
tries {Sj}Dj=1. In this case, we can analytically marginalise
u in (2) to obtain

q(f) =

∫
p(f |u)q(u)du = N (µqf ,K

q
f ), (4)

µqf = µ+α>vec(m− µ(Z)), (5)

Kq
f = kD(X,X)−α>

(
kD(Z,Z)− S

)
α, (6)

which resembles (2)–(3), but which is analytically tractable
given variational parameters

{
m,S,Z

}
.

Recall that a vector field is a mapping f : Rd → RD that
associates a point in Rd with a vector in RD. A Gaussian
(random) field is a vector field, such that for any finite col-
lection of points {xi}Ni=1, their associated vectors in RD
are jointly Gaussian distributed, i.e. a Gaussian field is a
GP. We shall use both terminologies, but when we refer to
a Gaussian field, we will think of the outputs as having a
direction.

2.2. Wishart Processes

The Wishart distribution is a distribution over symmetric,
positive semi-definite matrices. It is the multidimensional
generalisation of the χ2-distribution. Suppose Fv is a D-
variate Gaussian vector for each v = 1, . . . , ν independently,
say Fv ∼ N (0,A). Then Σ =

∑ν
v=1 FvF

>
v is Wishart
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distributed with ν degrees of freedom and scale matrix A.
We write for short Σ ∼ WD(A, ν). By Bartlett’s decom-
position (Kshirsagar, 1959), this can also be represented
as Σ = LFF>L>, where F is a D × ν-matrix with all
entries unit Gaussian andA = LL>.

With this parametrization we define Wishart processes, as
in (Wilson & Ghahramani, 2010):

Definition 1. Let L be a D ×D matrix, such that LL> is
positive semidefinite and fd,v ∼ GP

(
0, kd,v(x,x

′)
)

inde-
pendently for every d = 1, . . . , D and v = 1 . . . , ν, where
ν ≥ D. Then if

Σ(x) = L

(
ν∑

v=1

fv(x)f>v (x)

)
L> (7)

is Wishart distributed for any marginal x, and if for any fi-
nite collection of pointsX = {xi}Ni=1 the joint distribution
Σ(X) is determined through the covariance functions kd,v ,
then Σ(·) is a Wishart process. We will write

Σ ∼ WPD(LL>, ν, κ), (8)

where κ is the collection of covariance functions {kd,v}.

If Σ follows a Wishart distribution with ν degrees of
freedom and scale matrix LL> of size D × D, then for
some ρ ×D-matrix R of rank ρ, we have that RΣR> ∼
Wρ(RLL

>R>, ν). That is,RΣR> is Wishart distributed
on the space of ρ × ρ symmetric, positive semi-definite
matrices.

The Wishart distribution is closely related to the Gaussian
distribution in a Bayesian framework, as it is the conjugate
prior to the precision matrix of a multivariate Gaussian. Fur-
thermore, it is the distribution of the maximum likelihood
estimator of the covariance matrix.

The Wishart process is a slight misnomer as the posterior
processes are not marginally Wishart. This is due to the
mean function not being constant 0, and a more accurate
name could be matrix-Gamma processes. We shall not
refrain from the usual terminology: a Wishart process is a
stochastic process, whose prior is a Wishart process.

2.3. Stochastic Differential Equations

We will consider SDEs of the form

dxt = µ(xt)dt+
√

Σ(xt)dBt, (9)

where the last term of the right-hand side is the Itô integral
(Itô, 1946). The solution xt is a stochastic process, often
referred to as a diffusion process, and µ and Σ are the drift
and diffusion coefficients, respectively. In (9), Bt denotes
the Brownian motion.

The Brownian motion is the GP satisfying that all increments
are independent in the sense that, for 0 ≤ s1 < t1 ≤
s2 < t2, then Bt1−s1 is independent from Bt2−s2 . Further,
any increment has distribution Bt − Bs ∼ N (0, t − s).
Lastly, B0 = 0. This is equivalent to the GP with constant
mean function 0 and covariance function (t, s) 7→ min{s, t}
(Rasmussen & Williams, 2006).

Given some initial condition (e.g. x0 = 0), we can gen-
erate sample paths [0, T ] → RD by the Euler-Maruyama
method. Euler-Maruyama (Kloeden & Platen, 2013) finely
discretizes the temporal dimension 0 = t0 < t1 < . . . <
tl = T , and pushes xti along the vector field xti+1 =

xti + µ(xti)∆i +
√

Σ(xti)∆iN , where N ∼ N (0, ID)
and ∆i = ti+1 − ti.

3. Model and variational inference
We consider a random field f : RD × [0, T ] → RD and a
GP g : RD → Rη . Their priors are

f ∼ GP(0, kf (·, ·)⊗ ID), g ∼ GP(0, kg(·, ·)⊗ Iη).
(10)

We also have a Wishart process Σ : RD×[0, T ]→ G, where
G is the set of symmetric, positive semi-definite D × D
matrices; the specific prior on this will follow in Section
3.1. We will approximate the posteriors of f , g and Σ with
variational inference, but first we will formalise the model.

We propose a continuous-time deep learning model that can
propagate noise in high-dimensions. This is done by letting
the diffusion coefficient Σ(xt) of an SDE be governed by a
Wishart process. The model we present factorises as

p(y,Θ) =p(y|g)p(g|xT ,ug)p(ug)p(xT |f)

· p(f |Σ,uf )p(uf )p(Σ|uΣ)p(uΣ),
(11)

where Θ :=
{
g,ug,xT ,f ,uf ,Σ,uΣ

}
denotes all vari-

ables to be marginalised. We assume that data D ={
(xi,yi)

}N
i=1

is i.i.d. given the process, such that p(y|g) =∏N
i=1 p(yi|gi). We approximate the posterior of g with the

variational distribution as in (4), i.e.

q(gi) =

∫
p(gi|ug)q(ug)dug (12)

= N (µ̃g(xi), k̃g(xi,xi)), (13)

where

µ̃g(xi) = α>g (xi)vec(mg), (14)

k̃g(xi,xi) = kηg (xi,xi) (15)

−α>g (xi)
(
kηg (Zg,Zg)− Sg

)
αg(xi),

where αg(xi) := kηg (xi,Zg)k
η
g (Zg,Zg)

−1. Here mg is
an M × η matrix, and Sg is an Mη × Mη-matrix, con-
structed as η different M ×M -matrices Sg = {Sj}ηj . Dur-
ing inference (Quiñonero Candela & Rasmussen, 2005), we
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x0 xt xT

Σt ft

g y

uΣ uf
ug

(a) Graphical model based on Eq. (11)

· · ·
· · ·

· · ·xs := ft

ft = µ(xt)(s− t) +
√

Σ(xt)N

xt xs

µ(·)

Σ(·)

ft

(b) Cycle from (a) and how it moves along the time-axis.

Figure 1. (a) Graphical model based on the factorisation in Eq. (11); (b) The cycle from (a), which represents the field f , and how it moves
along the time-axis. Here N ∼ N (0, (s− t)I). Blue represents the flow/SDE, square nodes are variational variables.

additionally assume that the marginals gi = g(xi) are inde-
pendent when conditioned on ug . This is an approximation
to make inference computationally easier.

The inputs to g are given as the state distribution of an
SDE at a fixed time point T ≥ 0. We construct this
SDE from the viewpoint of a random field. Consider
the random walk with step size ∆ on the simplest Gaus-
sian field, where any state has mean µ and covariance Σ.
For any time point t, the state distribution is tractable, i.e.
p(xt) = x0 +

∑S
s=1N (∆sµ,∆sΣ), where

∑
∆s = t and

S is any positive integer.

For a state-dependent Gaussian field, we define the random
walk

xt+∆ = xt + µ(xt)∆ +
√

Σ(xt)∆N , (16)

withN ∼ N (0, I). Given an initial condition x0, the state
xS after S steps is given by

xS = x0 +
S−1∑

s=0

(
µ(xs)∆ +

√
Σ(xs)∆N

)
. (17)

In the limit ∆→ 0, this random walk dynamical system is
given by the diffusion process (Durrett, 2018)

xT − x0 =

∫ T

0

µ(xt)dt+

∫ T

0

√
Σ(xt)dBt, (18)

where B is a Brownian motion. This is an SDE in the
Îto-sense, which we numerically can solve by the Euler-
Maruyama method. We will see that by a particular choice
of variational distribution that Σ(xt) will be the realisation
of a Wishart process. The coefficients in (18) are determined
as the mean and covariance of a Gaussian field f . The
posterior of f is approximated with a Gaussian q(fi) =
N (µqf (xi), k

q
f (xi,xi)), where

µqf (xi) =α>f (xi)vec(mf ), (19)

kqf (xi,xi) =kDf (xi,xi) (20)

−α>f (xi)
(
kDf (Zf ,Zf )− Sf

)
αf (xi), (21)

and αf (·) = kDf (·,Zf )kDf (Zf ,Zf )−1.

So far, we have seen how we move a data point x0 through
the SDE (18) to xT , and further through the GP g, to make
a prediction. However, each coordinate of x moves inde-
pendently. By introducing the Wishart process, we will see
how this assumption is removed.

3.1. Wishart-priored Gaussian random field

We are still considering the Gaussian field f , whose pos-
terior is approximated by the variational distribution q(f).
To regularise (or learn) the noise propagated through this
field into g, while remaining within the Bayesian variational
framework, we define a hierarchical model as

p(f) =

∫
p(f |uf ,Σ)p(uf )p(Σ|uΣ)p(uΣ)d{Σ,uf ,uΣ},

(22)
where Σ is a Wishart process. Specifically, its prior is

Σ ∼ WPD(LL>, ν, kf ), (23)

that is any marginal Σ(xt) = LJJ>L>, where J is
the D × ν-matrix with all independent entries jd,v(xt)
drawn from GP’s that share the same prior jd,v(·) ∼
GP(0, kf (·, ·)). To approximate the posterior of the Wishart
process we choose a variational distribution

q(J ,uΣ) = q(J |uΣ)q(uΣ) := p(J |uΣ)q(uΣ), (24)

where q(uΣ) =
∏D
d=1

∏ν
v=1N (mΣ

d,v,S
Σ
d,v). Here, mΣ

d,v

is M×1 and SΣ
d,v is M×M for each pair {d, v}. Notice the

same kernel is used for the Wishart process as is used for the
random field f , that is: only one kernel controls the vector
field f . The posterior of Σ is naturally defined through the
posterior of J . Given our choice of kernel, this approximate
posterior is identical to Eqs. (19)-(21), only changing the
variational parameters to mΣ and SΣ, and D changes to
Dν.

What remains to be defined in (11) is p(f |Σ,uf ). Since
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Σ(xt) is a D×D-matrix we define

p
(
f |{Σ(xi)}Ni=1,uf

)
= N

(
µ̃(X), k̃Σ

f (X,X)
)
, (25)

µ̃(xi) = α>f (xi)vec(uf ), (26)

k̃Σ
f (xi,xj) =

(
Σ(xi)− hij

)
δij , (27)

where hij = αf (xi)
>kDf (Zf ,Zf )αf (xj) and δij is Kro-

necker’s delta. Notice this, conditioned on the Wishart
process, constitutes a FITC-type model (Snelson & Ghahra-
mani, 2006).

This goes beyond the assumption of independent output
dimensions, and instead makes the model learn the inter-
dimensional dependence structure through the Wishart pro-
cess Σ. This structure shall also be learned in the variational
inference setup. The posterior of conditional f is approxi-
mated by

q(f ,uf |{Σ(xi)}Ni=1) = q(f |{Σ(xi)}Ni=1,uf )q(uf )

= p(f |{Σ(xi)}Ni=1,uf )q(uf ),

(28)

where q(uf ) := N (mf , k
D
f (Zf ,Zf )). At first, this might

seem restrictive, but covariance estimation is already in Σ
and the variational approximation is the simple expression

q(f |{Σ(xi)}Ni=1) =

N∏

i=1

N
(
α>f (xi)mf ,Σ(xi)

)
. (29)

The marginalisation can then be computed with Jensen’s
inequality

log p(y) = log

∫
p(y,Θ)dΘ

≥
∫

log
(p(y,Θ)

q(Θ)

)
q(Θ)dΘ

=

∫
log p(y|g)q

(
g|Θ\{g}

)
dΘ (30)

− KL
(
q(ug)‖p(ug)

)

− KL
(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
,

or, in a more straightforward language,

log p(y) ≥ Eq(g)[log p(y|g)]− KL
(
q(ug)‖p(ug)

)
(31)

− KL
(
q(uf )‖p(uf )

)
−KL

(
q(uΣ)‖p(uΣ)

)
.

The right-hand side in (31) is the so-called evidence lower
bound (ELBO). The first term, the expectation, is analyti-
cally intractable, due to q(g) being non-conjugate to the like-
lihood. Therefore, we determine it numerically with Monte
Carlo (MC) or with Gauss-Hermite quadrature (Hensman
et al., 2015). With MC, often a few samples are enough for
reliable inference (Salimans & Knowles, 2013).

The KL-terms in (31) can be computed analytically as they
all involve multivariate Gaussians. Still, due to some of the
modelling constraints, it is helpful to write them out, which
yields

KL
(
q(ug)‖p(ug)

)
=

η∑

d=1

KL
(
q(ugd)‖p(ugd)

)
, (32)

KL
(
q(uΣ)‖p(uΣ)

)
=

D∑

d=1

ν∑

v=1

KL
(
q(uΣd,v

)‖p(uΣd,v
)
)
,

(33)

where in both instances we used the independence between
the GPs. The remaining one is special. Since both distribu-
tion share the same covariance it reduces to

KL
(
q(uf )‖p(uf )

)
=

1

2

D∑

d=1

m>fdk
D
f (Zf ,Zf )−1mfd .

(34)
Here, kDf (Zf ,Zf )−1 is already known from the computa-
tion of (33), as the kernel and inducing locations are shared.

Summarising this section, we have inputs x0 := x that are
warped through an SDE (governed by a random field f )
with drift µ and diffusion Σ that is driven by one kernel kDf .
The value of this SDE, at some given time T , is then used
as input to a final layer g, i.e. g(xT ) predicts targets y(x).
All this is inferred by maximising the ELBO (31).

3.2. Complexity and scalability

The computational cost of estimating Σ with a Wishart, as
opposed to a diagonal matrix, can be burdensome. For
the diagonal, the cost is O(DNM2) since we need to
compute (3) D times. Sampling Dν GP values and then
matrix-multiplying it with a D × ν matrix is of complex-
ity O(DνNM2 +DνD). Hence, if we, for simplicity, let
ν = D, we have overhead cost ofO(D2NM2 +D3). Note
this is only the computational budget associated with the
diffusion coefficients of the random field; the most costly
one.

On this inspection, we propose a way to overcome a too
heavy burden if D is large. Naturally this involves an ap-
proximation; this time a low-rank approximation on the
dimensionality-axis. Recall that, if Σρ ∼ WPρ(I, ν, κ),
then ΣD := LΣρL

> ∼ WPD(LL>, ν, κ). The matrices
naturally are of rank ρ� D. The computational overhead is
reduced toO(ρ2NM2+Dρ2) if ν = ρ. This same structure
was introduced by Heaukulani & van der Wilk (2019) for
time-series modelling of financial data; and it reminisces the
structure of Semiparametric Latent Factor Models (SLFM)
(Seeger et al., 2005). That is, we have ρ GPs, and the D-
dimensional outputs are all linear combinations of these.
For clarity, we need only to compute/sample

√
ΣD = LJ ,
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where J is a ρ× ν matrix, with GP values according to the
approximate posterior q(J), where D replaced by ρ.

3.3. Further model specifications

If ρ is too small it can be difficult to identify a good diffusion
coefficient as the matrix is too restricted by the low rank.
One possible way to overcome this is too add ‘white noise’
to the matrix

Σ = LFF>L> + Λ, (35)

where Λ is a diagonal D×D-matrix. In many situations,
this will ensure that the diffusion is full rank, and this pro-
vides more freedom in estimating the marginal variances.
However, if the values on the diagonal of Λ are estimated
by maximum likelihood, we have to be cautious. If Λ be-
comes to ‘dominant’, inference can turn off the Wishart-part,
potentially leading to overfitting.

Consider the matrix L, that makes up the scale matrix of the
Wishart process. It is fully inferred by maximum likelihood,
hence there is no KL-term to regularise it. Effectively, this
can turn off the stochasticity of the flow by making some
matrix norm of L be approximately zero. Then the flow
is only determined by its drift and overfitting is a likely
scenario.

To alleviate this concern we propose to regularise L by its
rownorms. That is,

∀d = 1, . . . , D :

ρ∑

r=1

L2
d,r = 1, (36)

where Ld,r denotes the entries ofL. First of all, this ensures
that the prior variance for all dimensions is determined by
the kernel hyperparameters, as it makes the diagonal of the
scale matrix LL> equal to 1. This way the variance in each
dimension is a ‘fair’ linear combination of the ρ GPs that
control the Wishart.

3.4. Extending to time series

The specified model can be specified to model temporal data
D = {yi, ti}Ni=1 in a straightforward way. In a few lines,
see also Figure 1, we write

xt = x0 +

∫ t

0

µ(xs)ds+

∫ t

0

√
Σ(xs)dBs, (37)

f(·)|Σ(·),D ∼ GP(µ(·),Σ(·)), (38)
Σ(·) ∼ WP(·|D), (39)

p(yt|xt) = N (g(xt),AΣ(xt)A
> + Λ). (40)

If g is not the identity mapping, we can define a latent
dynamical model. Say g is a GP mapping from RD to Rη.

This is similar to GP state space models (GPSSM) where the
dynamics, or transitions, are defined xt = f(xt−1)+εx and
yt = g(yt) + εy , for GPs f and g and some noise variables
εx and εy, usually Gaussian with zero mean and diagonal
covariance matrix (Deisenroth et al., 2012; Eleftheriadis
et al., 2017).

The latent dynamics defined in (37)–(39) are not restricted to
have equi-temporal measurements and model non-diagonal
covariance structure both in the latent states x and in the
observed states y through the matrixA, which is an η×D-
matrix. Adding the diagonal η×η-matrix Λ is necessary to
avoid singularity. Even though Σ(·) is a D ×D-matrix, we
can still lower-rank approximate with a ρ-rank matrix, as
described in Section 3.2. The log-likelihood we compute is

log p(yt|gt,Σ(xt)) =
η

2
log(2π)− log(det(B))

− 1

2
(yt − gt)>B−1(yt − gt),

(41)

where B := AΣ(xt)A
> + Λ. As a consequence of

the matrix-determinant lemma and the Woodbury identity,
we can evaluate the likelihood cheaply, because of B’s
structure. The ELBO that we optimise during training is
similar to (31), only the likelihood term is different: it is
swapped for a variational expectation over (41). We as-
sume independence between all temporal observations, i.e.
p(D) =

∏N
i=1 p({yi, ti}).

4. Experiments
We evaluate the presented model in both regression and a
dynamical setup. In both instances, we use baselines that
are similar to our model to easier distinguish the influence
the diffusion has on the experiments. We evaluate on a well-
studied regression benchmark and on a higher-dimensional
dynamical dataset.

4.1. Regression

We compare our model, which we will dub Wishart-priored
GP flow (diffWGP), to three baseline models in order to shed
light on some properties of the diffWGP.

GP flows Reproducing the model from Hegde et al. (2019)
will give indications, if it is possible to increase overall
performance by modelling the randomness in the flow. This
model has a diagonal matrix Σ with entries determined
solely by the chosen covariance function. We will refer to
this model with diffGP.

No noise flows We also evaluate the model, where Σ =
0, i.e. the situation where the flow is deterministic. The
remaining part of the flow is still as in (19) to make fair
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Figure 2. Test-set log-likelihood values on eight UCI regression datasets. The violin plots show the test-set log (likelihood-ratio) of
baseline diffusion models with respect to the SGP baseline. Values greater than 0 indicate an improvement over SGP. Key findings are
that No noise can overfit heavily (boston, concrete, naval), and diffWGP performs best on most datasets. The figure has been cut for
readability—this explain why occasionally purple violins are missing.

comparisons. All the relevant KL-terms are removed from
the ELBO (31). We refer to this as No noise.

Sparse GPs Also in the variational setup we shall com-
pare to vanilla sparse GPs, i.e. the model introduced by
Titsias (2009). We will refer to this as SGP.

4.1.1. EXPERIMENTAL SETUP

In all experiments, we choose 100 inducing points for the
variational distributions, all of which are Gaussians. All
models are trained for 50000 iterations with a mini-batch
size of 2000, or the number of samples in the data if smaller.
In all instances, the first 10000 iterations are warm-starting
the final layer GP g, keeping all other parameters fixed. We
use the Adam-optimiser with a step-size of 0.01. After this
all flows (this excludes SGP) are initialised with a constant
mean 0 and covariance functions chosen as RBF with auto-
matic relevance determination (ARD), initialised with tiny
signal noise to ensure x0 ≈ xT . The time variable T is
always 1.

The remaining 40000 iterations (SGP excluded) are updat-
ing again with Adam with a more cautious step-size of
0.001. For the diffWGP, the first 4000 of these are warm-
starting the KL-terms associated with the flow to speed up
convergence. Note that this model fits more parameters than
the baseline models. For the diffWGP, we update the ELBO

Eq(g)[log p(y|g)]− KL
(
q(ug)‖p(ug)

)

− c2KL
(
q(uf )‖p(uf )

)
−cKL

(
q(uΣ)‖p(uΣ)

)
,

(42)

diffGP vs. SGP diffWGP vs. diffGP
BIKE (14) 0.8695 0.2262
BOSTON (13) <0.0001 0.9867
CONCRETE (8) 0.0042 0.0348
KIN8NM (8) <0.0001 0.0164
NAVAL (26) 0.8695 <0.0001
POWER (4) <0.0001 0.1387
PROTEIN (9) <0.0001 <0.0001
WINE_WHITE (11) 0.0003 0.3238

Table 1. Wilcoxons paired signed rank-test. Listed are the p-values
of the hypothesis of equal median versus alternative that location
shift is negative. Bold highlights the significant ones at a 0.05
confidence level. In parenthesis are the input dimensionality of the
datasets. Results are for ρ = 5.

where c = min(1, iteration4000 ), i.e. we warm-start the regular-
ising KL-terms.

4.1.2. UCI REGRESSION BENCHMARK

Figure 2 shows the results on eight UCI benchmark datasets
over 20 train-test splits (90/10). On the y-axis we see the
distribution of the test-set log-likelihood subtracted by the
SGP log-likelihood on the same split. Values greater than
0 are improvements over the baseline SGP. An analogous
plot with RMSE is supplied in the supplementary material.
In Table 1, we use Wilcoxon’s paired rank test to evaluate
whether the more advanced models perform better.

Key observations are: not having noise in the flow (No
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(a) The log-likelihood of forecasted measurements up to 48 hours. The bold lines mark the average
log-likelihood at a given hour based on 50 simulations. The associated shaded areas span twice the
standard error.

(b) The density (colour) of the 48-hour horizon predictions of temperature measurement in Tiantan
(x-axis) and Dongsi (y-axis). These locations are within a few kilometres of each other. Left: diagonal
noise case; Right: Wishart noise. The Wishart detects a correlation between these two temperature
measurements, as we would expect for such nearby locations.

Figure 3. (a): The performance of predictions plotted over the forecast horizon. (b): The joint development of two temperature
measurements over the forecasted time-horizon for two different models.

noise) seem to lead to overfitting, except in two cases, where
a more expressive model is preferred. In one of these cases
(protein) Wishart modelling improves both the RMSE and
the log-likelihood. In one case (boston), overfitting was ab-
surdly large: on this dataset we were not able to reproduce
the results from Hegde et al. (2019) either. In four cases
(concrete, kin8nm, power, wine_white), No noise overfitted
mildly. In two of these cases, diffWGP improved over dif-
fGP. The two cases, where no improvement is significant,
are simple cases, wine_white and power, which are almost
linear or low-dimensional. On the naval dataset, the No
noise model could not run due to numerical issues. Here
diffWGP outperforms diffGP in the log-likelihood. We con-
jecture this is because of the high dimensionality and the
fact that almost no observation noise is present. We found
no substantial influence of the parameter ρ; if any then it
actually seems to prefer lower-rank approximations. This

emphasises that training Wishart processes is difficult, and
further research in this area is needed.

4.2. Auto-regressive modelling of air quality

We evaluate our dynamical model on atmospheric air-quality
data from Beijing (Zhang et al., 2017). We pre-processed
the data for three locations in the city (Shunyi, Tiantan,
Dongsi), which each have hourly observation of ten features
over the period of 2014–2016. Explicitly, the ten features
are: the concentration of PM2.5, PM10, SO2, NO2, CO,
O3, the temperature and dew point temperature, air pressure
and amount of precipitation.1

1Full data set available at https://archive.ics.
uci.edu/ml/datasets/Beijing+Multi-Site+
Air-Quality+Data.
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We use the first two years of this dataset for training and
aim to forecast into the first 48 hours of 2016. Including
the variables year, month, day and hour, we have in total 34
features for the three cities and 17520 temporal observations
for training. Missing values were linearly interpolated. All
features were standardised.

To analyse properties of our proposed model, we perform
an ablation study with the following models:

diffWGP The model proposed in the paper to model the
diffusion with Wisharts.

Diagonal noise The drift term remains as in the diffWGP
model, but the diffusion is restricted to diagonal, i.e. corre-
lated diffusion cannot be modelled. This becomes the model

xt = xs + µ(xs)(t− s) +
√

Λ(t− s)εt, ε ∼ N (0, I).
(43)

No drift The drift is constantly zero, and the diffusion is
modelled by a Wishart, which results in the model

xt = xs +
√(
AΣ(xt)A> + Λ

)
(t− s)εt. (44)

This model is a continuous-time version of the model pre-
sented by Heaukulani & van der Wilk (2019).

In all instances, we train by minibatching shorter sequences,
and we use the Adam optimiser (Kingma & Ba, 2014) with
a learning rate 0.01. Due to the large amount of tempo-
ral observation compared to small batches we ease off on
momentum.

Figure 3(a) shows how the different models forecast future
observations by reporting the log-likelihood traces of indi-
vidual models at test time. The figure shows the mean and
two times the standard error, which we obtain from 50 sim-
ulations. At first, we see that having no drift starts off better,
but quickly drops in performance. This is not unexpected,
as the data has structure in its evolution. The difference
between the models with drift, but different diffusions, are
more interesting for this dataset. Overall, Wishart diffusions
perform best, and it seems to be resilient and take only few
and relatively small ‘dips’.

We expect this dataset to have highly correlated features.
The three locations in Beijing are, in distance, close to each
other; naturally the different air measurements are similar
in their evolution over time. Figure 3(b) illustrates how
a model with diagonal noise is incapable of learning this
joint development of temperature measurements. Here, the
Wishart learns that when the temperature in Dongsi is high,
it is also high in Tiantan. This behaviour is seen in many
pairs of the features considered, and it suggests diffWGP
has dynamics moving on a manifold of smaller dimension
than if diagonal noise was considered. This supports the

hypothesis that diffWGP moves as one dynamical systems,
opposed to 34.

5. Conclusion
In a non-parametric Bayesian way, we presented a scalable
approach to continuous-time learning with high emphasis
on correlated process noise. This noise is modelled with a
Wishart process, which lets high-dimensional data evolve as
a single system, rather thanD independent systems. We pre-
sented a way to scale this to high dimensions. We found that
it is never worse taking the dependence structure in the pro-
cess noise into account. However, with certain types of data,
it can mitigate overfitting effects and improve performance.

Code is publicly available at: https://github.com/
JorgensenMart/Wishart-priored-SDE.
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Abstract

We propose a fully generative model where the latent variable respects both the dis-
tances and the topology of the modeled data. The model leverages the Riemannian
geometry of the generated manifold to endow the latent space with a well-defined
stochastic distance measure, which is modeled as Nakagami distributions. These
stochastic distances are sought to be as similar as possible to observed distances
along a neighborhood graph through a censoring process. The model is inferred
by variational inference and is therefore fully generative. We demonstrate how the
new model can encode invariances in the learned manifolds.

1 Introduction

Dimensionality reduction aims to compress data to a lower dimensional representation while pre-
serving the underlying signal and suppressing noise. Contemporary nonlinear methods mostly call
upon the manifold assumption [Bengio et al., 2013] stating that the observed data is distributed near
a low-dimensional manifold embedded in the observation space. Beyond this unifying assumption,
methods often differ by focusing on one of three key properties (Table 1).

Generative Topology Distance
PCA (3) 7 (3)
MDS 7 7 3
IsoMap 7 (7) 3
t-SNE 7 (3) 3
UMAP 7 3 3
GPLVM 3 7 7
Iso-GPLVM (our) 3 3 3

Table 1: A list of common dimensionality reduc-
tion methods and coarse overview of their features.

Topology preservation. A topological space
is a set of points whose connectivity is invari-
ant to continuous deformations. For finite data,
connectivity is commonly interpreted as a clus-
tering structure, such that topology preserving
methods do not form new clusters or break
apart existing ones. For visualization purposes,
the uniform manifold approximation projection
(UMAP) [McInnes et al., 2018] appears to be
the current state-of-the-art within this domain.

Distance preservation. Methods designed to find low-dimensional representation with pairwise
distances that are similar to those of the observed data may generally be viewed as a variant of
multi-dimensional scaling (MDS) [Ripley, 2007]. Usually, this is achieved by a direct minimization
of the stress defined as

stress =
∑

i<j≤N
(dij − ‖zi − zj‖)2, (1)

where dij are the dissimilarity (or distance) of two data points xi and xj , and Z = {zi}Ni=1 denote
the low-dimensional representation in Rq .
More advanced methods have been built on top of this idea. In particular, IsoMap [Tenenbaum
et al., 2000] computes dij along a neighborhood graph using Dijkstra’s algorithm. This bears some
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ar
X

iv
:2

00
6.

11
74

1v
1 

 [
st

at
.M

L
] 

 2
1 

Ju
n 

20
20



resemblance to t-SNE [Maaten and Hinton, 2008] that uses the Kullback-Leibler divergence to match
distribution in low-dimensional Euclidean spaces with the data in high dimensions.

Generative models. A common trait for the mentioned methods is that they learn features in a
mapping from high-dimensions to low, but not the reverse. This makes the methods mostly useful
for visualization. Generative models [Kingma and Welling, 2014, Rezende et al., 2014, Lawrence,
2005, Goodfellow et al., 2014, Rezende and Mohamed, 2015] allow us to make new samples in
high-dimensional space. Of particular relevance to us, is the Gaussian process latent variable
model (GP-LVM) [Lawrence, 2005, Titsias and Lawrence, 2010] that learns a stochastic mapping
f : Rq → RD jointly with the latent representations z. This is achieved by marginalizing the
mapping under a Gaussian process prior [Rasmussen and Williams, 2006]. The generative approach
allows the methods to extend beyond visualization to e.g. missing data imputation, data augmentation
and semi-supervised tasks [Mattei and Frellsen, 2019, Urtasun and Darrell, 2007].

In this paper we learn a Riemannian manifold using Gaussian processes on which distances on
the manifold match the local distances as is implied by the Riemannian assumption. Assuming the
observed data lies on a Riemannian q-submanifold of RD with infinite injectivity radius, then our
approach can learn a q-dimensional representation that is isometric to the original manifold. Similar
statements only hold true for traditional manifold learning methods that embed into Rq if the original
manifold is flat. We learn global and local structure through a common technique from survival
analysis, combined with a likelihood model based on the theory of Gaussian process arc-lengths.
Lastly, we show how the GP approach allow us to marginalize the latent representation and produce a
fully Bayesian non-parametric generative model. We envision how learning generative models by
pairwise dissimilarities easily allow for encoding invariances.

2 Background material

2.1 Gaussian Processes

A Gaussian process (GP) [Rasmussen and Williams, 2006] is a distribution over functions, f :
Rq → R, which satisfy that for any finite set of points {zi}Ni=1, in the domain Rq, the output
f =

(
f(z1), . . . , f(zN )

)
have a joint Gaussian distribution. This Gaussian is fully determined by a

mean function µ : Rq → R and a covariance function k : Rq × Rq → R, such that

p(f) = N (µ,K), (2)

where µ =
(
µ(z1, . . . , µ(zN )

)
andK is the N ×N -matrix with (i, j)-th entry k(zi, zj).

GPs are well-suited for Bayesian non-parametric regression, since if we condition on dataD = {z, x},
where x denote the labels, then the posterior of f(z∗), at a test location z∗, is given as

p
(
f(z∗)|D

)
= N (µ∗,K∗),

{
µ(z∗) + µ∗ = k(z∗, z)>k(z, z)−1x,
K∗ = k(z∗, z∗)− k(z∗, z)>k(z, z)−1k(z∗, z).

(3)

We see that this posterior computation involves inversion of the N ×N -matrix K, which has
complexity O(N3). To overcome this computational burden in inference we consider variational
sparse GP regression, which introduces M auxiliary points u, that approximate the posterior of f
with a variational distribution q. For a review of variational GP methods, we refer to Titsias [2009].

2.2 Riemannian Geometry

A manifold is a topological space, for which each point on it has a neighborhood that is homeomorphic
to Euclidean space; that is, manifolds are locally linear spaces. Such manifolds can be embedded into
spaces of higher dimension than the dimensionality of the associated Euclidean space; the manifold
itself has the same dimension as the local Euclidean space. A q-dimensional manifoldM can, for
our purposes thus, be seen as a surface embedded in RD. In order to make quantitative statements
along the manifold we require it to be Riemannian.
Definition 1. A Riemannian manifoldM is a smooth q-manifold equipped with an inner product

〈·, ·〉x : TxM×TxM→ R, x ∈M, (4)

that is smooth in x. Here TxM denotes the tangent space ofM evaluated at x.

2
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Figure 1: Left: A graphical representation of the model: x is the observational input, J is the
Gaussian process manifold and θ are the parameters it yields based on latent embedding z. ε
is a hyperparameter for the neighbor-graph embedding and u are variational parameters. Right:
Illustration of the task: the dashed lines are Euclidean distances in three dimensions. The black ones
are neighbors and their distance along the two-dimensional manifold should match the 3d-Euclidean
distance. The red is not a neighbor-pair and the manifold distance should not match it.

The length of a curve is easily defined from the Riemannian inner product. If c : [0, 1]→M is a
smooth curve, its length is given by s =

∫ 1

0
‖ċ(t)‖dt. On an embedded manifold f(M) this becomes

s =

∫ 1

0

‖ḟ(c(t))ċ(t)‖dt. (5)

A metric onM can then be defined as

dM(x,y) = inf
c∈C1(M)

{
s|c(0) = x and c(1) = y

}
, x,y ∈M. (6)

2.3 The Nakagami distribution

We consider random manifolds immersed by a GP. The length of a curve (5) on such a manifold is
necessarily random as well. Fortunately, since this manifold is a Gaussian field, then curve lengths
are well-approximated with the Nakagami m-distribution [Bewsher et al., 2017].

The Nakagami distribution [Nakagami, 1960] describes the length of an isotropic Gaussian vector, but
Bewsher et al. [2017] have meticulously demonstrated that this also provides a good approximation
to the arc length of a GP. The Nakagami has density function

g(s) =
2mm

Γ(m)Ωm
s2m−1 exp

(
− m

Ω
s2
)
, s ≥ 0, (7)

and it is parametrised by m ≥ 1/2 and Ω > 0; here Γ denotes the Gamma function. The parameters
are interpretable by the equations

Ω = E[s2] and m =
Ω2

Var(s2)
, (8)

which can be used to infer the parameters through samples, although it does involve a fourth moment.

3 Model and variational inference

With prerequisites settled, we now set up a Gaussian process latent variable model that is locally
distance preserving and globally topology preserving. Notation-wise we let Z denote the latent
representation of a dataset X = {xi}Ni=1, xi ∈ RD, and let f : z 7→ x be the generative mapping.

3.1 Distance and topology preservation

The manifold assumption hypothesizes that high-dimensional data in RD lie near a manifold with
small intrinsic dimension. A manifold suggests that, a neighborhood around any point is approxi-
mately homeomorphic to a linear space. So nearby points are approximately linear, but non-nearby
points have distances greater than the linear approximation suggests.

3



We shall build a Gaussian process latent variable model (GP-LVM) [Lawrence, 2005] that is explicitly
designed for distance and topology preservation. The vanilla GP-LVM takes on the Gaussian
likelihood where observations X are assumed i.i.d. when conditioned on a Gaussian process f . That
is, p(X|f) =

∏N
i=1 p(xi|f(zi)) and p(xi|f(zi)) = N (xi|f(zi), σ

2). In contrast, we consider a
likelihood over pairwise distances between observations.

Neighborhood graph. To model locality, we condition our model on a graph embedding of the
observed data X . The graph is the ε-nearest neighbor embedded graph; that is, the undirected graph
with vertices V = X and edges E = {eij}, where eij is in E, only if d(xi,xj) < ε, for some metric
d. Equivalently, G = (V,E) can be represented by its adjacency matrix AG with entries

aij = 1d(xi,xj)<ε. (9)
In Sec. 3.5 we discuss how to choose ε informedly, but for now we view it as a hyperparameter.

Manifold distances. To arrive at a likelihood over pairwise distances, we first recall that the linear
interpolation between zi and zj in the latent space has curve length

sij =

∫ 1

0

‖J(c(t))ċ(t)‖dt, c(t) = zi(1− t) + zjt. (10)

As the manifold distance dM is the length of the shortest connecting curve, then sij is by definition
an upper bound on dM. However, as the manifold is locally homeomorphic to a Euclidean space,
then we can expect sij to be a good approximation of the distance to nearby points, i.e.

dM(zi, zj) ≈ sij for ‖xi − xj‖ < ε (11)
dM(zi, zj) ≤ sij otherwise. (12)

The behavior we seek is that local interpolation in latent space should mimic local interpolation in
data space only if the points are close in data space. If they are far apart, they should repel each other
in the sense that the linear interpolation in latent space should have large curve length.

Censoring. To encode this behavior in the likelihood, we introduce censoring [Lee and Wang,
2003] into our objective function. This method is usually applied to missing data in survival analysis,
when the event of something happening is known to occur later than some time point.

We may think of censoring as modeling inequalities in data. The censored likelihood function for
i.i.d. data ti following distribution function Gθ, with density function gθ, is defined as

L({ti}Ni=1|θ, T ) =
∏

ti<T

gθ(ti)
∏

ti≥T
(1−Gθ(T )), (13)

where θ are the parameters of the distribution G and T is some ‘time point’, where the experiment
ended. Carreira-Perpiñan [2010] remark that most neighborhood-embedding methods have loss
functions with two terms: one attracting close point and one scattering term for far away connections.
Censoring provides a likelihood with similar such terms.

Local distance likelihood. From earlier, we know that if the manifold f(M) is a Gaussian field,
then distances (10) are approximately Nakagami distributed. Thus, we write our likelihood as

L(
{
{eij}i<j

}N−1
i=1
|θ, ε) =

∏

eij<ε

gθ(eij)
∏

eij≥ε
(1−Gθ(ε)), (14)

where Gθ is the distribution function of a Nakagami with parameters θ = {m,Ω}. Hence, the
log-likelihood we shall maximise is

l
({
{eij}i<j

}N−1
i=1

∣∣∣θ, ε
)

=−
∑

eij<ε

(
log Γ (mij)+mij log

(
Ωij
mij

)
−(2mij−1) log (eij)+

mije
2
ij

Ωij

)

−
∑

eij≥ε

(
log Γ (mij)−log

(
Γ (mij)−γ(mij ,

mij

Ωij
e2ij)

))
, (15)

where Γ and γ denotes the Gamma function and lower incomplete gamma function respectively and
mij and Ωij are the Nakagami-parameters of Eq. 10.

Until now, we have introduced the log-likelihood based of an ε-NN graph, that preserves geometric
features. Next we marginalize all other parameters to make a generative model.
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3.2 Marginalizing the representation

We have a loss function (15) that matches distances eij with parameters θij = {mij ,Ωij}. We now
seek to first fit these parameters and marginalize them to obtain a full generative approach. First, we
will assume that conditioned on θ, we get the independent observations, i.e.

p(E|θ, ε) =
∏

1≤i<j≤N
p(eij |θij , ε) = L(

{
{eij}i<j

}N−1
i=1
|θ, ε), (16)

as known from Eq. 14. We infer these parameters of the Nakagami by introducing a latent Gaussian
field J and a latent representation z. This allows us to define curve length (10), which we assume is
also Nakagami distributed. In practice, we draw1 m samples of sij from Eq. 10, and estimate the
mean and variance of their second moment. This gives estimates of mij and Ωij via Eq. 8.

Essentially, we match distances on the manifold J with the observed distances E . We marginalize
this manifold

p(E|z) =

∫
p(E|θ)p(θ|J , z)p(J)dθdJ , where (17)

p(θ|J , z) :=

∫
p(θ|s)p(s|J , z)ds, and p(θ|s) =

{
δEs2(Ω)

δΩ/Var(s2)

(
m
)
,

(18)

where δ denotes the Dirac probability measure and p(s|J , z) is the approximate Nakagami distribution
(10). This means that sij and eij are both Nakagami variables that share the same parameters, which
interpretively means the manifold distances sij match the embedding distances eij .

Further, to make it generative, we can pose a prior on z and marginalize this in Eq. 17. We infer
everything variationally [Blei et al., 2017], and choose a variational distribution over the marginalized
variables. We approximate the posterior p(θ,J , z,u|E) with

q(θ,J , z,u) := q(θ|J , z)q(J ,u)q(z), (19)

where u is an inducing variable [Titsias, 2009], and

q(θ|J , z) = p(θ|J , z), q(J ,u) = p(J |u)q(u) and q(z) = N (µz,Az), (20)

where µz is a vector of size N andAz is a diagonal N×N -matrix. Further q(u) = N (µu,S) is a
full M -dimensional Gaussian.

This allow us to bound the log-likelihood (15), with the evidence lower bound (ELBO)

log p(E) = log

∫
p(E , θ,J , z,u)

q(θ,J , z,u)
q(θ,J , z,u)dθdJdudz (21)

≥ Eθ[l(E|θ)]− KL
(
q(u)||p(u)

)
− KL

(
q(z)||p(z)

)
, (22)

where both KL-terms are analytically tractable, but the first term has to be approximated using Monte
Carlo. The right hand side here is readily optimized with gradient descent type algorithms.

In summary, we have a latent representation Z and a Riemannian manifold immersed as a GP J .
This implies that between any two points zi and zj , we can compute sij , which is approximately
Nakagami. With censoring we can match sij with observation eij , if eij < ε; else we push sij to
have all its mass on [ε,∞). It is optimized with variational inference, by maximizing Eq. 22.

3.3 Generating new samples

All inference thus far has been done in a coordinate-free manner; in other words, we have yet to
embed our manifold f(M) in RD. We can do this embedding with Euclidean isometries, translation
and rotation, and inspired by the fundamental theorem of analysis

f(zi) = f(zj) +

∫ 1

0

j(c(t))ċ(t)dt, c(t) = zj(1− t) + zit. (23)

1We can approximate s by finely discretizing c and sum over the integrand.
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In this view, the translation part can be done by the original points, as we assume f(zj) ≈ xj and we
can, for a new point z∗, define a generator as

x∗ := f(zi) + R(zi)

∫ 1

0

J(c(t))ċ(t)dt, c(t) = zi(1− t) + z∗t, (24)

where R is a D ×D rotation-matrix, that can be optimized to best fit with the original data D and J
is the inferred Jacobian from Eq. 22. This is a rather naive way, since it needs many local embeddings
and follows the intuition of Zhang and Zha [2003]. A more principled way would be to learn an
isometry f by regression methods.

3.4 Invariance learning and geometric constraints

Why is it worth learning the manifold in a coordinate-free way, if we still need to fit values afterwards?
Invariances are easily encoded via dissimilarity pairs by introducing equivalence classes in saying
d(xi,xj) = 0 if xi and xj are in the same equivalence class. Popular choices of such equivalence
classes are rotations, translations and scaling. Many constraints one could wish to impose on models
can be formulated as geometric constraints. It holds true also for GPLVM-based models as seen in
Urtasun et al. [2008], who wish to encode topological information, and Zhang et al. [2010], who
highlight invariant models’ usefulness in causal inference. Geometric constraints can alternatively be
encoded with GPs that take their output directly on a Riemannian manifold [Mallasto et al., 2018].

The geometry of latent variable models in general is an active field of study [Arvanitidis et al., 2018,
Tosi et al., 2014], and Simard et al. [2012] and Kumar et al. [2017] argues that the tangent (Jacobian)
space serves a convenient way to encode invariances.

3.5 Topological Data Analysis

The model is naturally affected by the hyperparameter ε. We argue that it can be chosen in a
geometrically founded way using Topological Data Analysis [Carlsson, 2009]. By constructing a Rips
diagram [Fasy et al., 2014] one can find ε such that the ε-NN graph captures the right topology of data.
It is beyond this paper to summarize the techniques; we refer readers to Chazal and Michel [2017].

4 Experiments

We perform experiments first on a classical toy dataset and on the image dataset MNIST. We refer to
the presented model as Isometric Gaussian Process Latent Variable Model (Iso-GPLVM). For some
comparisons we evaluate other models also based on dissimilarity data. In all cases we initialize
Iso-GPLVM with IsoMap, as it is known that GP-based methods are sensitive to initializations [Bitzer
and Williams, 2010]. We use the Adam-optimizer [Kingma and Ba, 2014] with a learning rate of
3 · 10−3 and optimize sequentially q(z) and q(u) separately. We use m = 100 inducing points for
q(u) and an ARD-kernel as covariance function for the GP.

4.1 Swiss roll

The ‘swiss roll’ was introduced by Tenenbaum et al. [2000] to highlight the difficulties of non-linear
manifold learning. The point cloud resides on a 2-dimensional manifold embedded in R3 and can be
thought as a paper rolled around itself (see Fig 2A).

We find a 2-dimensional latent embedding by four methods: classical MDS, t-SNE, IsoMap and
Iso-GPLVM. From Fig. 2 we observe the linear MDS is unable to capture the highly non-linear
manifold. t-SNE captures some local structure, but the global outlook is far from the ground truth.
We tried with several tunings of the perplexity hyperparameter (60 in the plot), but none of them
successfully captured the structure. It is known that t-SNE is prone to make clusters, even if clusters
are not a natural part of a dataset [Amid and Warmuth, 2018].

Naturally, as the dataset was constructed for the ‘geodesic’ approach of IsoMap, this captures both
global and local structure. On closer inspection, we see the linear interpolations, stemming from
Dijkstra’s algorithm, leaves some artificial ‘holes’ in the manifold. Hence, on a smaller scale it can
be argued that he topology of the manifold is captured imperfectly. The plot suggests Iso-GPLVM
closes these holes and approximates the topology of an unfolded paper. We used ε = 0.4.
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Figure 2: Data (A) and embeddings (B–E). All embeddings are shown with a unit aspect ratio to
highlight that only IsoMap (D) and Iso-GPLVM (E) recover the elongated structure of the swiss roll.

4.2 MNIST

Metrics. We evaluate our model on 5000 images from MNIST, and we foremost wish to highlight
how invariances can be encoded with dissimilarity data. In particular, we consider fitting our model to
data under three different distance measures. We consider the classical Euclidean distance measure

d(xi,xj) = ‖xi − xj‖. (25)

Further, we consider a metric that is invariant under image rotations

dROT(xi,xj) = inf
θ∈[0,2π)

{
d (Rθ(xi),xj)

}
, (26)

where Rθ rotates an image by θ radians. We note dROT(xi,xj) ≤ d(xi,xj) always. Finally, we
introduce a lexicographic metric [Rodriguez-Velazquez, 2018]

dLEX(xi,xj) =

{
r, if yi 6= yj ,

min{2r, d(xi,xj)}, if yi = yj ,
(27)

which in the censoring phase enforce images carrying different labels to repel each other. This is a
handy way to encode a topology or clustering based on discrete variables, when such are available.
For all metrics, we have normalized the data and have set r = 7.

Results. Figure 3(A—C) show the latent embeddings of the three metrics. The background color
is the measure E

[√
det(J>J)

]
, which provide a view of the Riemannian geometry of the latent space.

Bishop et al. [1997] call this measure the magnification factor. Large values (light color) imply that
trajectories moving in this area are longer and likely also more uncertain [Hauberg, 2018].

Panels A, D and E base their latent embedding on the Euclidean metric. We observe that IsoMap
(D) and Iso-GPLVM (A) appear similar in shape, unsurprisingly as we initialize with IsoMap, but
Iso-GPLVM finds a cleaner separation of the digits. Particularly, this is evident for the six, three and
eight digits. The fives seem to group into several tighter cluster, and this behavior is found for t-SNE
as well. Overall, from a clustering perspective, t-SNE visually is superior; but distances between
clusters in (A) can be larger than the straight lines that connect them. This is evident from the lighter
background color between cluster, say, zeros and threes. We note that IsoMap and t-SNE has no
associated Riemannian metric and as such distances between any input cannot be computed.

The rotation invariant metric result in a latent embedding where different classes significantly overlap.
Upon closer inspection we, however, note several interesting properties of the embedding. Zero digits
are well separated from other classes as a rotated 0 does not resemble any other digits; the one digits
form a cluster that is significantly more compact than other digits as there is limited variation left
after rotations have been factored out; two and five digits significantly overlap, which is most likely
due to 5 digits resembling 2 digits when rotated 180◦; similar observations hold for the four, nine and
six digits; and a partial overlap between three and eight digits as is often observed. The overall darker
background is due to the rotational invariant metric being shorter than the Euclidean counterpart.
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Figure 3: Embeddings of MNIST attained with our method under different metrics (A—C) and for
baselines IsoMap (D) and t-SNE (E). The background color show the expected volume measure
associated with the Riemannian metric E

[√
det(J>J)

]
. A large measure generally indicate high

uncertainty of the manifold. Panel F shows Riemannian geodesics under the lexicographic metric.

In terms of clustering the lexicographic approach outshines the other metrics. This is expected as
the metric use label information, but neatly illustrate how domain-specific metrics can be developed
from weak or partial information. Most classes are well-separated except for a region in the middle
of the plot. Note how this region has high uncertainty.

The Riemannian geometry of the latent space imply that geodesics (shortest paths) can be computed
in our model. Figure 3F shows example geodesics under the lexicographic metric. Their highly
non-linear appearance emphasizes the curvature of the learned manifold. The green geodesics has
one endpoint in a cluster of nine digits and move along this cluster avoiding the uncertain area of
eights and fives, as opposed on linearly interpolating through them.

5 Discussion

We introduced a model for non-linear dimensionality reduction from dissimilarity data. It is the first of
its kind based on Gaussian processes. The non-linearity of the method stems both from the Gaussian
processes, but also from the censoring in the likelihood. It unifies ideas from Gaussian processes,
Riemannian geometry and neighborhood graph embeddings. Unlike traditional manifold learning
methods that embed into Rq , we embed into a q-dimensional Riemannian manifold through the learned
metric. This allows us to learn latent representations that are isometric to the true underlying manifold.

The model does have limitations. The generation of new samples was only naively considered, and
further research of how to isometrically embed a manifoldM into RD to fit with observation is
warranted. Existence is ensured as the observed data manifold is one such embedding. The Nakagami
distribution that approximates the arc lengths of Gaussian processes is prone to overestimate the
variance [Bewsher et al., 2017] and better approximations would improve our method. Further, the
model inherits problems of optimizing the latent variables and it has previously been noted that good
performance in this regime is linked with good initialization [Bitzer and Williams, 2010].

Our experiments highlight that Iso-GPLVM can learn the geometry of data and geometric constraints
are easier encoded by learning a manifold contra doing GP regression. The uncertainty quantification
associated with GPs follow through and further highlights the connection between uncertainty,
geometry and topology. To the best of our knowledge, our model is the first of its kind that, locally,
can asses the quality of the manifold approximation through the associated Riemannian measure.
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6 Broader Impact

We present a general methodology for learning low-dimensional representations from pairwise
distances, such that the associated model is fully generative and both distance and topology preserving.
The model is further suitable for encoding a priori known invariances through a choice of metric.
The contribution is largely methodological.

We envision the model being applied for data where it is easier to express prior knowledge through
the design of an appropriate distance function. For instance, in much biological data there is side-
information regarding the underlying evolutionary structure, which can be used to develop suitable
evolutionary metrics.

The flexibility of the approach does open the door for misuse. For instance misleading visualizations
(of the latent variables) can be easily created by a malicious choice of metric. The lexicographic
example illustrates this potential misuse as one can imagine forcing groups apart with this mechanism,
even if the data disapproves such groupings.
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Abstract

Causal discovery estimates the underlying physical process that generates the
observed data: does X cause Y or does Y cause X? Current methodologies
use structural conditions to turn the causal query into a statistical query, when
only observational data is available. But what if the these statistical queries are
sensitive to causal invariants? This study investigates one such invariant: the causal
relationship between X and Y is invariant to the marginal distributions of X and
Y . We propose an algorithm that use a non-parametric estimator that is robust to
changes in the marginal distributions. This way we may marginalize the marginals,
and inspect what relationship is intrinsically there. The resulting causal estimator is
competitive with current methodologies and has high emphasis on the uncertainty
in the causal query; an aspect just as important as the query itself.

1 Introduction
Determining causal relationships is a constant challenge, and the ultimate goal of the
natural sciences. The gold standard for establishing such relationships is intervention
studies, where the physical state of a system is manually modified to determine whether
this changes the system behavior. Such experiments are, however, often infeasible
as the interventions can be unethical, physically impossible, expensive and so forth.
This begs the question of whether causal relationships can be estimated from data in
a systematic manner. Most work in this direction has been for high-dimensional data
used to estimate directed acyclic graphs (DAGs), but in recent years the most simple of
these, the two-vertex DAG, has gained more attention. The methods for determining
these causal bindings go under the name of causal discovery, and the usual approach is
to assume some structural equation model, and probabilistically verify its existence.

By assuming a particular model, it becomes possible to establish conditions under
which the causal direction is unique, thereby providing a formalism to the causal
question. From a practical point of view, this formalism is, however, only useful when
the structural model assumption is known to be true, which is seldom the case.

In this paper, we explore the case of bivariate causal inference when model as-
sumptions are challenged by shifts in marginal distributions. We propose an estimator
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based on comparing regression errors, as in Blöbaum et al. [1], but in a non-parametric
way. This provides an estimator that is more robust to these distributional shift than
well-known methods for bivariate causal discovery, while staying on-par in performance.

1.1 Related Work
In his seminal work, Pearl [2] introduced causal inference for high-dimensional obser-
vational data, phrased as the estimation of a causal structure. This is a DAG, where
random variables are nodes and an edge X → Y indicates that X is a (direct) cause of
Y . Given more than three variables, such edges can be estimated through conditional
independence tests, e.g. an edge between X and Y can be discarded if they are indepen-
dent conditioned on a third variable Z. This idea, however, breaks down in the bivariate
case, which is the main focus of the present paper.

In the bivariate case, one usually must impose assumptions that break the symmetry
of correlation. This is achieved by assuming two models — one for X → Y and
another for Y → X — and choosing among these either by 1) verifying exactly one
of the underlying models or 2) proposing a score/complexity measure for choosing the
simplest model following the principles of Occam’s razor.

Model Verification [3–5]: It is natural to assume an additive noise model (ANM)
[3, 4], i.e. Y = f(X) + NY , where NY ⊥⊥ X . Hoyer et al. [3] show that when f is
nonlinear, then the true causal direction can be identified. Similar results hold when f is
linear and the noise is non-Gaussian [4]. However, if the underlying system is not an
ANM, the analysis is inapplicable – e.g. in the presence of hidden confounders. Zhang
and Hyvärinen [5] extend the ANM to allow for an unknown bijective mapping of the
observations and show that this structure is identifiable for many joint distributions
P(X,Y ).

Model Scoring [1, 6–8]: An intuitive scoring mechanism is to regress Y from X and
vice versa and ask which direction has higher likelihood. This is, e.g., implemented by
Mooij et al. [8] who propose using a Gaussian Process Latent Variable Model [9] to
handle the noise/latent observations. The chosen causal direction must then be biased
towards the prior over the latent points and sensitive to hyperparameters, which is an
implicit model assumption.

Blöbaum et al. [1] take an approach based on asymmetry of regression error, and
show that this asymmetry is coherent with the causal direction under certain assumptions,
of which the most important are the independence of the cause and the causal mechanism
[10] and that this mechanism is monotonic as a function of the cause. Loosely, they
show that when the noise is sufficiently small and X → Y , then

E[Var(Y |X)] ≤ E[Var(X|Y )]. (1)

They quantify these measures by parametric regression.
Janzing et al. [7] propose the Information Geometric Causal Inference (IGCI)

scoring mechanism. This is derived from the assumption that data is noise free, i.e.
Y = f(X), and on the postulate that the true causal mechanism f is independent of the
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cause X . This is realized by non-parametrically estimating the expected log-derivative
of f :

E[log |f ′|] ≈ 1

N − 1

N−1∑

i=1

log
|yi+1 − yi|
xi+1 − xi

, (2)

where xi+1 > xi for i = 1, . . . , N − 1, and both X and Y have been preprocessed to
make them comparable, i.e. standardized wrt. a Gaussian or a uniform base measure.
The direction with the smallest log-derivative is then chosen as being causal. While this
mechanism provides no guarantees in the presence of noise, IGCI has been successful
on real world data; in Sec. 3.4 we, however, demonstrate that this success is likely due
to a bias in the studied benchmark data.

1.2 Causal invariant
As seen above, current causal inference propose one model for each causal direction,
and then select among them. This begs the questions, what if the data does not support
either model? and can causal relationships be discovered without restrictive model
assumptions? If we believe that the causal and probabilistic domains abide by different
rules, then our causal estimators should follow other paradigms than model verifica-
tion/selection. We can think of this as model-bias: many existing methods are too
sensitive to distributional and structural restrictions of probabilistic models. By this
we mean that the hypothesis of causality is tested in a domain sensitive to marginal
distributions and structural equations.

We recap the basic definition of causality as expressed by the do-calculus [2].

Definition 1. If for some x 6= x̂, we have that P(Y |do(x)) 6= P(Y |do(x̂)), then X is a
cause of Y .

The interventional distribution, P(Y |do(x)), is only attainable if before the experi-
ment is conducted the experimenter has made sure X = x, i.e. the experimenter has
intervened. If the above definition is satisfied, we denote this by X → Y . It is immedi-
ately clear that the above definition can hold in both directions. Further, for the task at
hand, to estimate the causal direction from P(X,Y ), without access to the interventional
distribution apparent in the definition, one can only make qualified guesses.

Imposing model assumptions can, in the spirit of Occam’s razor, be seen as qualified
guessing. However, any such a priori interpretation of the data will bias the causal
prediction. To minimize such bias, we advocate a bivariate causal inference approach
that tries to stay clear of scores tied to probabilistic models, and only rely on a test
statistic that is well-defined for almost all datasets.

Like Pearl [2], we consider causal structures that are DAGs. Then, if X → Y ,
we must also have X → g(Y ) for any function g, since the contrary would construct
a cycle. If g is a bijection, this is equivalent to f(X) → Y , where f = g−1. This
motivates our guiding principle.

Principle A (Invariant causality). A deterministic bijective reparametrization of the
observed variables does not change the causal direction.
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Figure 1: Visualisation of Principle A. If X is a cause of Y , then theoretically arrows
from fi to gi must point right for all i = 1, . . . , n. We suggest to test this empirically.

We only consider bijections, as we a priori do not know if X → Y or Y → X . The
above then states that the causal relationship between X and Y is the same as between
f(X) and g(Y ), for bijections f and g. Equivalently, our choice of units should not
influence the causal direction; i.e., the marginal distributions of X and Y must not
matter. Note that most model-based causal inference schemes are not closed under
nonlinear reparametrizations and, hence, violate Principle A. For instance, a nonlinear
reparametrization of an ANM does not yield another ANM.

Principle A is illustrated in Figure 1. If for some fi and gj , where i, j = 1, . . . , n,
we have that gj is a cause of fi, then X is not a cause of Y . Likewise, if fi is a cause
of gj , then Y can not be a cause of X , since X there is a direct path from X to Y in
the causal graph. Our idea is to construct n bijections of both X and Y , and test the
causal relationship among these. If the decisions are unanimous, the causal link is likely
strong. If they are inconsistent, this gives uncertainty in the causal estimator and we
may interpret this inconsistency over bijections as uncertainty associated with the causal
decision making.

This discussion of invariances in causal estimators has not involved how to realize
Principle A. To this end, we consider the setup from Blöbaum et al. [1]. The inequality
in Eq. 1 is shown to hold for small noise settings, when the condition

Cov
(
∂E[Y |X=x]

∂x
,E[Var(Y |X=x)]pX(x)

)
=0, (3)

is satisfied. Here pX denotes the marginal distribution of the cause X . This criterion
is similar to IGCI’s idea that the expected log-derivative of the conditional mean is
uncorrelated with the marginal distribution of the cause, and positively correlated in the
anti-causal direction. These ’uncorrelated mechanism’ ideas [11] fall under the causal
principle of modularity and autonomy. For a broader review see Peters et al. [10].

In summary, Blöbaum et al. [1] prove that under similar conditions to what we shall
impose, then the prediction error is greater in the anti-causal direction compared to the
causal – at least when the noise is small. Experimentally, they do regression by predeter-
mined types, such as polynomial or neural nets. We are interested in marginalising the
underlying distribution, thus it is not obvious that some parametric form of regression
should be robust to this. In the next section, we present a non-parametric estimator of
the regression error. This should be seen as a means to realizing Principle A. If anything,
causal inference is about decision-making under imperfect or uncertain information.

These are the outlines of the present work, which we use to derive a simple causal
inference scheme (Sec. 2). We evaluate this scheme in Sec. 3 and find that the empirical
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performance is on par with current standard methodologies, but with the additional
benefit that we provide well-calibrated uncertainties over causal predictions. On this
path, we further derive and validate an extension to handle more than two variables
and find that this establishes a link between our proposed estimator and classic condi-
tional independence tests for causal structures [2]. All proofs are in the supplementary
materials.

2 Quadratic Variation in Causal Discovery
If f(X) is a predictor of Y , then f(X) (trivially) correlates with Y . This motivates us to
measure the correlation between Y and the predictor E[Y |X]. We will show that we can
quantify this completely non-parametrically, i.e. not making distributional assumptions
on X and Y , besides finite second moments. In Sec. 2.2 we will show how this also
allows us to apply Principle A.

To derive an estimator of this correlation, we first recap some theory from stochastic
processes. Let Yt denote a real-valued stochastic process on some probability space,
and t > 0. The quadratic variation [12] of Yt is the increasing process defined as

〈Y 〉t := lim
S→0

n∑

i=1

(Yti − Yti−1)
2, (4)

where S is the mesh1 of partitions of the interval [0, t]. We define the mean quadratic
variation (MQV) as the scaling 〈Y 〉t/t, which can be seen as a measure of averaged
noise over the time interval [0, t]. Notice that estimators akin to Eq. (4) for non-time
series are well-known in non-parametric regression [13].

For the problem at hand, consider two real-valued random variables X and Y from
a joint distribution P(X,Y ). Similar to other methods of causal discovery, we shall see Y
as a function of X , and vice versa. In particular we view it as a stochastic process on
the interval supp(X), which we assume to be bounded.

Theorem 2.1. Let X have support on a compact and connected subset C of R, and
assume that E[Y |X = x] is a continuous differentiable function over C. Assume
EY 2 <∞. Let further (xi, yi), i = 1, . . . , N , be iid samples from P(X,Y ). If we order,
such that xi+1 ≥ xi for all i = 1, . . . , N − 1, then it holds that

1

N − 1

N−1∑

i=1

(yi+1 − yi)2 → 2EVar(Y |X), (5)

as N →∞.

Theorem 2.1 motivates computing the following quantity for unit variance observa-
tions

CX→Y := 1− 1

2(N − 1)

N−1∑

i=1

(
yi+1 − yi

)2
, (6)

1For a partition 0 < t1 < t2 < . . . < tN < t, we denote the mesh as the longest distance between two
points max{(ti+1 − ti)|i = 1, . . . , N − 1)}.
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since

CX→Y → 1− E[Var(Y |X)]

Var(Y )
(7)

= 1− Var(Y )− Var(E[Y |X])

Var(Y )
(8)

=
Var(E[Y |X])

Var(Y )
(9)

= Corr(E[Y |X], Y )2, (10)

as N →∞. Eq. 6 measures the quality of a prediction of Y from X without realizing
the implied regression, and without making specific assumptions over this regression,
i.e. it measures the regression error non-parametrically. A causal inference scheme, as
suggested by Bloebaum’s condition, is then to infer the direction X → Y , if CX→Y >
CY→X ; and symmetrically for the other direction.

Notice the similarity here with the estimator in [1] (also seen in Eq. (1)), this imply
that doing causal inference with (6), inherits the guarantees formulated there. Notice
the regression performed in [1] is here implicitly done non-parametrically, and as such
with fewer structural assumptions. For future reference, we denote the estimator (6) as
the Mean Quadratic Variation (MQV).

While we advocate a model-free approach, the above analysis does make some
assumptions, which should be understood prior to drawing conclusions from data.

• We assume the causal mechanism is continuous.

• We assume X has compact and connected support in order to bound the mesh of
the partition generated by the sample.

• We assume there exist a unique sorting of x, which is not the case if there are
duplicated values. If duplicates are present, MQV can potentially — by statistical
anomaly — sort the y values and detect a signal which is not there.

We circumvent with the last two issues by resampling and perturbing the data. Based
on the given sample, we estimate the underlying probability distribution P̃(X,Y ), then
resample the same amount of data points from this distribution and reevaluate MQV (6).
We repeat this procedure several times. This approach both secures unique sorting and
has an element of bootstrapping that quantifies the sensitivity to unusual observations.
This approach gives empirical distributions of both CX→Y and CY→X , and we can
then assert probabilities to the event CX→Y > CY→X , and its mutual counterpart.
Algorithm 1 summarize these ideas, and a practical realization is described in Sec. 3.

2.1 Weak Identifiability
The guarantees by Blöbaum et al. [1] apply to our approach too. We can, however, make
some insights into when our approach is sensible. First, we consider when it should not
be relied upon.
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Algorithm 1
1: Input N iid samples of (X,Y ).
2: µ← Estimate the underlying probability distribution of (X,Y ).
3: for i from 1 through m do
4: (X̃, Ỹ )← Sample N points (x̃,ỹ) from µ.
5: Cxi ← CX̃→Ỹ ; Cyi ← CỸ→X̃
6: px ← µ(Cx > Cy); py ← µ(Cy > Cx)

Proposition 2.2. Let a, b, c, d ∈ R and a, c 6= 0. Assume X and Y are random
variables with compact support. Then

(1) If we have that E[Y |X = x] = ax + b and E[X|Y = y] = cy + d, then
CX→Y = CY→X , in the limit of infinite data.

(2) We have CaX+b→cY+d = CX→Y .

This tells us that when the relationship between X and Y is near linear, we cannot
make an informed decision. Note that the use of bootstrapping ensure that both decisions
have low confidence, such that the user is at least aware of the lack of identifiability.
Although, the linear case is often ideal when considering structural equation models, it
is not necessarily simpler in general.

In the noise-free setting, more formal statements can be made.

Proposition 2.3. If X and Y are random variables with compact support, and there
exists measurable f such that Y = f(X), then CX→Y ≥ CY→X , in the limit of infinite
data.

This directly ties into the definition of causality, since if there is no noise we have
that PY |X=x = PY |do(x), such that the correct causal decision will be taken. Practically,
this indicates, that we should make few incorrect decision in the low-noise regime.
Notice that if f is bijective, there exists a function g = f−1 such that X = g(Y ). Then
CX→Y = CY→X , such that any taken decision will have low confidence. As before,
bootstrapping implies that the user is aware of this low confidence.

2.2 Reparametrization Invariance
Principle A informs us that causal decisions should not rely on a specific parametrization
of the observations; it is an intrinsic property of the system, rather than a property of
the observation space in which we measure. One approach to extracting this intrinsic
property is to consider a large number of different parametrizations, in order to be
partially invariant to the particular choice of parametrization. Since MQV (6) itself is
non-parametric, it is meaningful to evaluate CX→Y under different parametrizations
of the observed data. The simplicity of MQV (6), thus, allow us to realize Principle A.
We emphasize that this principle is truly causal, yet most model-based approaches,
ANMs in particular, cannot aid its realization. Analogously, parametric approaches to
regression-error based causal inference [1] are not, in general, invariant to changes in
marginal distributions.
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Figure 2: Left: a scatterplot of Horsepower (x) vs. Acceleration (y) from the Auto-MPG
Dataset (pair0016 from CEP [14]). Right: a bijective reparametrizations of the same.
The invariance principle states, that the causal decisions taken, should be identical for
these two datasets.

We provide a straight-forward realization of the above considerations: define a dis-
tribution over bijective reparametrizations f, g, sample Cf(X)→g(Y ), and infer a causal
direction. We postpone practical implementation details to Sec. 3 and supplementary
materials.

Algorithm 2
1: Input N iid samples of (X,Y ). Positive integers M and m.
2: for j from 1 through M do
3: Generate random bijection f and g.
4: µ← Estimate the underlying probability distribution of (f(X), g(Y )).
5: for i from 1 through m do
6: (F̃ , G̃)← Sample N points (f̃ ,g̃) from µ.
7: Cxij ← CF̃→G̃; Cyij ← CG̃→F̃
8: From samples Cxij and Cyij empirically evaluate px = P(CX > CY ) and py =

1− px.

In Fig. 2 we illustrate the invariance principle. Naturally, the marginal distributions
of X and Y changes dramatically, and we may think of Algorithm 2 as integrating out
the marginals. Principle A dictates that the causal link between X and Y is unaltered
under these changes; our method then investigates if the estimator (Eq. 6) is too. If
this is not the case, we may choose to say that our method cannot estimate a causal
relationship. It is clear that any causal inference method based on distributional aspects
of the observed is sensitive to these bijections. We empirically investigate this in
Sec. 3.4.

2.3 Causal Confidence
The proposed approach can be realized through sampling. This imply that our approach
naturally assigns probabilities px and py to each causal direction. From this, we can
near-trivially define a confidence, which allow us to rank decisions, as

conf(d) := |px(d)− 0.5|. (11)
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It is a feature of our approach, that the confidence in a decision is an integral part of the
decision itself. Notice px reflect both statistical and model uncertainties, respectively
thinking of the bootstrap and reparametrization considerations.

2.4 The Multivariate Generalization
The main focus of this paper is the bivariate case, but the idea neatly generalize to the
multivariate setting. So far, we have looked at the variance process (more specifically
the MQV), but by the polarization identity [12], we can expand to triplets (X,Y, Z) and
see that the covariance conditioned on Z is

Cov(X,Y )Z :=

N−1∑

i=1

wi,i+1

(
(
si+1 − si

)2 − (ti+1 − ti)2
)
, (12)

where si = xi + yi and ti = xi − yi and
∑N−1
i=1 wi,i+1 = 1

8 . Furthermore, the sorting
is chosen such that zi ≤ zi+1. This expression is symmetric in X and Y , but not in Z;
and notice how Eq. 12 in its unaveraged version is exactly the covariance process from
stochastic process theory. Hence, we call it the mean co-quadratic variation. We state
the following Theorem without proof here, as it is analogous to Theorem 2.1.

Theorem 2.4. Let (xi, yi, zi)i=1,...,N be iid samples from P(X,Y,Z), and assume that
Z has compact and connected support C ⊂ R. Assume further that E[X|Z = z] and
E[Y |Z = z] are both continuously differentiable over C. Define si = xi + yi and
ti = xi − yi for all i = 1, . . . , N . Then

1

8(N − 1)

N−1∑

i=1

(
(
si+1 − si

)2 − (ti+1 − ti)2
)
, (13)

tends to ECov(X,Y |Z) as N →∞.

By the law of total covariance, we have

Cov(X,Y )−Cov(E[X|Z],E[Y |Z])=E[Cov(X,Y |Z)], (14)

implying that if Eq. 12 is close to zero, then most of the covariation between X and Y
can be explained by Z. This indicates that X and Y might be independent given Z. Of
course, this is generally not a sufficient condition, but it is necessary. The following
statement gives sufficient conditions [15].

Theorem 2.5. Two random variables X and Y are independent if and only if

Cov(f(X), g(Y )) = 0, (15)

for any pair of functions f and g that are bounded and continuous.

This sufficient condition allows for a simple conditional independence test: trans-
form the observed values with bounded continuous functions and check if Eq. 12 is
zero for any such transformation. This naive test is exactly how we algorithmically
realize Principle A, which illustrates that our non-parametric estimators aligns with the
fundamental ideas from Pearl [2] and DAG estimation.
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3 Experiments
We now evaluate the empirical behavior of the proposed model-free approach. We
consider ANM and IGCI as baseline methods, and report results first on simulated data,
and then on the real-world CEP benchmark dataset [14]. For all comparisons below,
when we state IGCI, we mean the slope-based estimator with uniform reference measure.
For ANM, we applied the GP regression and the Hilbert-Schmidt Independence Criterion
[16]. Implementations are from the publicly available code given by Mooij et al. [14].
We rank our decisions based on the confidence score in Eq. 11, while ANM and IGCI
come with their own confidence scores [14]. Algorithmic details of our estimator are
available in the supplementary material alongside the associated source code.

We shall also compare to Regression Error-based Causal Inference (RECI) from
Blöbaum et al. [1], as their approach is highly similar to the one presented here. This
imply we have to choose a method of regression, and we regress by using the logistic-
function class. This decision was made based on what we found were the overall best
performance in their paper.

It was a motivation for us to present a non-parametric way of doing (implicit)
regression, that would alleviate the need to pick a fair regression method for both causal
and anti-causal direction. Further, the non-parametricity in our estimator is essential to
apply bijections meaningfully.

Lastly, we performed a small experiment on the sensitivity of how the reparametriza-
tions were sampled. The outline of this experiments was that as long as the bijections
were diverse enough, there is little sensitivity to the choice of distribution.

3.1 Simulated Pairs
The data considered here is 100 pairs, each consisting of 1000 observations, simulated
according to the procedure introduced by Mooij et al. [14]; trying to mimic real-world
data. There are four setups: the general simulated data (SIM), the data generated with
low noise to the effect (SIM-ln), the data with one confounder present (SIM-c), and
finally the data where the cause is Gaussian and the additive noise is too (SIM-G).

As we have observed, we would expect our method to perform well at least on the
low-noise data, as one would too for IGCI. The results for all datasets are visualized
in Fig. 3. This figure should be read from right to left as taking all decisions, we then
sequentially discard the decisions we are most uncertain about. The 10 blue lines are
outputs from Algorithm 2, indicating the inherent randomness in the decision-making.
We see that our method outperforms IGCI in most cases, and is comparable to ANM.
Equivalently, the cyan lines are the outputs from Algorithm 1 - that is, without bijections.

In all experiments, we note that our choice of ranking (11) prefers easier decisions,
which is evident from the concave shape of the result curve. Note that uncertainty is
larger for decisions that are considered difficult (low confidence), but the performance
on high confidence decisions is generally better than both ANM and IGCI. From Fig. 3
it is visible that MQV reports: ‘I don’t know’ when one blue line turns into many. At
this crucial point MQV is consistently as good or better than ANM.

Interestingly, if we take decisions with ANM in the same order as MQV, we obtain
more preferable concave curves; in fact such that the performance resembles MQV on
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SIM SIM-c SIM-ln SIM-G
RECI 64.1± 1.4 63.2± 2.4 83.1± 2.3 74.9± 3.9
MQV (w/o bijections) 62.2± 0.9 63.4± 0.1 82.7± 0.8 73.5± 0.8
MGV (w/ bijections) 68.8± 2.1 65.9± 2.5 82.0± 3.5 61.5± 2.6

Table 1: Average number of correct decisions and standard deviations over 10 runs.
Bold marks statistically significantly best method. Only regression-error based methods
are listed, as ANM and IGCI do not have error-bars; their performance can be read from
Figure 3.

high confidence situations. We investigated this on all 4 datasets, and the concavity is
visualized in Fig. 4. Here all decision are taken as determined by ANM, but ordered wrt.
Eq. 11; the lines indicate the difference to the black lines of Fig. 3. Hence the lines are
bound to go through (0, 0) and (100, 0), and in between any positive number imply an
improvement over ANM’s own ranking. In particular, we note that for decisions where
our estimator is certain, we generally improve upon ANM’s ranking.

The overall performance of RECI is shown in Table 1. We see that, unsurprisingly,
this is very similar to our approach without bijections. Another key observation from
Figure 3 is that on the most ’nature-like’ datasets, SIM and SIM-c, taking observations
into account improves overall decision making. On SIM-G we conjecture there might
be a bias in our estimator (without bijections), why it therefore might still be more ’safe’
to include bijections. This conjecture is based on that the Gaussian is the maximum
entropy distribution when mean and variance is known (standardized in our case), which
might make the regression error of Y → X tend to be larger if X is Gaussian, than if
it was not. This sort of bias is alleviated by marginalizing marginal distributions (with
bijections).

3.2 Real-World Data
The CAUSEEFFECTPAIRS (CEP) database2 is currently 108 datasets, of which 103
are bivariate. It consists of real-world observations annotated with a causal direction
[14]. As such, the 103 pairs are not independent, as several originate from the same
datasets, and to make up for this each pair has an associated weight. Our results on
this dataset are plotted in Fig. 5 and we see that we are comparable to other known
methods when we integrate out random bijections. The blue dots in the figure are
our results for respectively Algorithm 1 and 2 for 10 runs. Most runs for Algorithm 2
yielded accuracies in the range 0.62− 0.64, with one run having accuracy 0.66 and two
around 0.59. We see that Algorithm 2 is comparable to other known methods, while
Algorithm 1 is subpar (7/10 runs had accuracy in 0.58− 0.61). ANM yields an accuracy
of 0.63, and for IGCI 0.64. Most importantly, this illustrates that Principle A is not
hollow talk, since marginalizing bijections seem to significantly improve performance.

Over 10 runs the RECI method provide accuracies on the range of [0.46, 0.62],
averaging at 0.53. This is worse that our approach, even without bijections, and not
significantly better than random guessing.

2https://webdav.tuebingen.mpg.de/cause-effect/ as it appeared in December 2019.
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Figure 3: For the four different synthetic datasets, the blue lines (MQV with bijections)
are the proportion of correct decisions where the decisions have been ranked according
to the heuristic (11). The cyan lines are MQV without bijections. ANM and IGCI have
other confidence scores [14]. The shaded area is what falls below the 0.975 quantile of
a binomial distribution with p = 0.5.

Figure 4: Illustration of changes in concavity for ANM under changes in confidence
score. Any curve above the constant line 0 imply more concave decision curve, hence
the ranking we propose is better than the original [14]. Especially, concavity in the
left-most side of the plot is important, as this reflect the most confident decisions.
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Figure 5: Performance on the CEP-benchmark. The blue dots (MQV) illustrate the
inherent randomness in the algorithms. The dashed grey lines are quantiles had we
tossed a fair coin for each decision. The average performance of RECI is 0.53; below
the plotted window.

3.3 The Multivariate Generalization
We empirically illustrate the generalization to triplets (X,Y, Z) on data generated
similar to that in Sec. 3.1. We generate 100 DAGs of the type X ← Z → Y , and a
further 100 DAGs similar but with an added edge, either X → Y or Y → X . For
clarity, this means that we should find 100 times that X ⊥⊥ Y |Z and 100 times not. We
construct a test that transform the variables X and Y with bijections, and test whether
any such transformation make their absolute conditional covariance Cov(f(X), g(Y ))Z
(calculated as Eq. (12)) exceed some threshold. In the following we have set this
threshold to 0.15, and rejected the hypothesis of independence if more than 1% of the
samples go above this.

The results in Table 2 exemplify that (co-)quadratic variation is not misplaced in the
causal framework, knowing that causality and conditional independence testing have
been closely related for decades [2]. We further notice that Theorem 2.4 assumes Z
to be one-dimensional, but this extend to higher dimensions if one just finds a sorting
in this space. Keep in mind that, if the mesh tends to zero, then the convergence from
above is still assured. For practical considerations one would then find a permutation of
zi, i = 1, . . . , N such that maxi=1,...,N−1 ‖zi+1 − zi‖2 is as small as possible. This is
a non-trivial problem for higher dimensions than 1. Suggestions here could be to use
some kernel methods [17], or some ranking on data manifolds [18].
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ANM IGCI

RECI MQV

Figure 6: On the 100 pairs (rows) from SIM, we applied 20 random bijections (columns).
Above illustrates how the bijections influenced the decision. Red is an incorrect decision.
Table 3 quantitatively summarize the plots of this figure. We observe that MQV has
’fuller’ bars, indicating that decisions are less influenced by bijections.

Positives Negatives Total
True 99 1 100
False 3 97 100

Table 2: Conditional independence results on synthetic data.

3.4 Robustness
We evaluate how restrictive model assumptions are for the invariance principle; more
specifically we measure how robust the different causal inference methods are if we
transform X and Y with bijections. This gives an indication of which methods align
with Principle A. Fig. 6 has in each row one pair from the dataset SIM. To each of these
pairs, we applied 20 random bijections and kept track of the decisions made. Black
and red are respectively incorrect and correct decisions. We can see that MQV is more
robust to Principle A, as we have more full bars (or near full) along the rows, implying
the decisions are less likely to be altered by the bijections. In fairness it should be stated
that the bijections are not identical in-between plots. We may quantify this sensitivity
with the entropy, i.e. for each pair evaluate −d1 log d1 − d2 log d2, where d1 and d2 are
the fraction of times decision X → Y and Y → X were made. In Table 3 the average
entropy of causal decisions over all pairs in a data set is listed, which indicates how
robust a method is to bijections: small entropy imply robustness.

Table 3 provide evidence to the hypothesis that assuming a model is not robust under
random bijections. Our method deals better with this. One naturally also observes a
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SIM SIM-c SIM-ln SIM-G CEP
ANM 0.5953 0.5838 0.5457 0.5748 0.5591
IGCI 0.6620 0.6718 0.6692 0.6655 0.1247
RECI 0.6097 0.6092 0.5902 0.6066 0.6416
MQV 0.4895 0.4461 0.4906 0.4376 0.4381

Table 3: The mean entropy of decisions under random bijections.

clear deviant in Table 3, IGCI-decisions on CEP are nearly closed under bijections, and
there must be some entity in the data explaining this. Following up on this, we introduce
a strawman estimator

SX→Y :=
# of unique values in X
# of unique values in Y

, (16)

and infer X → Y if SX→Y < 1. Evidently this measure is invariant if we biject X and
Y , but its relation to causal decision taking is not evident. On CEP this procedure takes
the same decision as IGCI on 98 out of 103 pairs, and the strawman estimator alone
has an accuracy around 0.57−0.61 (in 3 cases SX→Y = SY→X , and we flip a coin).
Thus, we conjecture that the success IGCI has had on the CEP-Benchmark is a spurious
correlation due to duplicated values in the data. This is supported by the fact that IGCI
discard duplicated values.

4 Discussion and conclusion
We took a novel approach to bivariate causal discovery, by imposing invariance on the
causal domain rather than distributional assumptions. We did this by quantifying the
regression errors in a non-parametric manner, which allowed for us to meaningfully
take advantage of the proposed invariant principle (Principle A). We provide a thorough
empirical analysis on the impact of this principle.

The results show that this approach is feasible and is competitive with the current
methodologies, that impose structural model assumptions. We find both the theoretical
and computational ease of the approach highly appealing. However, we do not consider
the present work complete, and we hope that future work in the field will take into
account that if causal models are closed under reparametrizations, then so should its
estimators. The results show that the non-parametricity of the mean quadratic variation
(MQV) is more robust under reparametrizations, and that taking this into account
significantly improves performance. This insight also proposed an explanation for the
good performance of IGCI [7] on real-world observations to which there has been
previous speculation [7, 14].

Further, we have demonstrated that MQV extends to higher dimensions in ways that
are similar to the traditional conditional independence tests used for estimating DAGs
[2].

Finally, the presented method pays high attention to the uncertainty of any causal
estimation, which results in a confidence measure that outperforms the baselines and
shows good promise of detecting when it seems feasible to do causal inference with
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purely observational data; a query which is much more fundamental than the inference
itself.
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A Experimental details
For the experimental setup in the paper, we here give the explicit and detailed description.
See Algorithm 1 and 2 for notational help.

For our own method, we consistently use m=300 and M=100 (see Algorithm 2),
meaning we generate 100 random bijections for each pair, and for each of these we
subsample 300 times, c.f. Sec. 2. We estimate the underlying probability distribution by
Gaussian kernel density estimation, with Silverman’s rule of thumb for bandwidth [19].
This is a crude estimator for many pairs, but we leave it to future work to optimize this
procedure of the algorithm; and to fairly compare on all pairs we choose it throughout.

From a practical perspective we note that by Proposition 2.2 we may restrict this
search to strictly increasing functions.

Generation random increasing functions was done with the following setup:
draw γ from an inverse Gamma distribution with both shape and scale parameters
set to 5. Generate a Gaussian Process (GP) f with zero mean and covariance function
k(x, x′) = exp(− 1

2γ ‖x− x′‖22). Then let f(x0) := minx∈supp(X) f(x) and set

F (x) := f(x0) +

∫

X

(f(x)− f(x0))dx, (17)

then F is an increasing function.
Based on a sample (CX , CY ), we estimate

px =
1

(mM)2

mM∑

i=1

mM∑

j=1

1{cyj <cxi
}. (18)

We note that, since the GP has zero mean, its integral (17) has a linear mean function.
We introduce a confidence in each decision, and this heuristic is near trivial when

both algorithms return a probability px (we set py = 1−px). Thus we define confidence
of a decision d as

conf(d) := |px(d)− 0.5|. (19)

We rank our decisions based on this: the higher the confidence, the more we believe in
our decision. ANM and IGCI have other confidence scores [14].

When we state IGCI, we mean the slope-based estimator with uniform reference
measure. For ANM, we applied the GP regression and the Hilbert-Schmidt Independence
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Criterion [16]. Implementations are from the publicly available code given by Mooij
et al. [14].

B Proof of Theorems
Theorem 2.1. Let X have support on a compact and connected subset C of R, and
assume that E[Y |X = x] is a continuous differentiable function over C. Assume
EY 2 <∞. Let further (xi, yi), i = 1, . . . , N , be iid samples from P(X,Y ). If we order,
such that xi+1 ≥ xi for all i = 1, . . . , N − 1, then it holds that

1

N − 1

N−1∑

i=1

(yi+1 − yi)2 → 2EVar(Y |X), (20)

as N →∞.

Proof. Let f(x) :=E[Y |X=x], and decompose for all i

yi = f(xi) +
(
yi − f(xi)

)
=: f(xi) + εi. (21)

Then we see that
N−1∑

i=1

(
yi+1 − yi

)2
=

N−1∑

i=1

(
f(xi+1)− f(xi)

)2

+

N−1∑

i=1

(
εi+1 − εi

)2
(22)

+ 2

N−1∑

i=1

(
εi+1 − εi

)(
f(xi+1)− f(xi)

)
,

where the first and last terms tend to zero when scaled with 1/(N−1) due to Lemma B.1
(below) and the Cauchy-Schwartz inequality. Thus we are left with

N−1∑

i=1

(
εi+1 − εi

)2
=

N−1∑

i=1

ε2i +

N∑

i=2

ε2i − 2

N−1∑

i=1

εiεi+1, (23)

and the last term vanishes due to the iid assumption3 and the fact that Eεi = 0 for all i.
Hence, as N →∞,

1

N − 1

N−1∑

i=1

(
y2i + f(xi)

2 − 2yif(xi)
)

→ Var(Y ) + Var(E[Y |X])− 2Cov(Y,E[Y |X])

= Var(Y )− Var(E[Y |X])

= E[Var(Y |X)],

by the law of total variance4.
3Recall a sequence of iid variables, is still iid under any permutation.
4We assumed without loss of generality that EY = 0.
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Proposition 2.2. Let a, b, c, d ∈ R and a, c 6= 0. Assume X and Y are random
variables with compact support. Then

(1) If we have that E[Y |X = x] = ax + b and E[X|Y = y] = cy + d, then
CX→Y = CY→X , in the limit of infinite data.

(2) We have CaX+b→cY+d = CX→Y .

Proof. Ad (1):

CX→Y → Corr(E[Y |X], Y )2 = Corr(aX + b, Y )2 = Corr(X,Y )2,

and completely analogous for CY→X .
Ad (2): Clearly {xi}i=1,...,N and {axi+b}i=1,...,N have the same sorting when a 6=

0. CX→Y is obviously invariant to scaling and translating in Y , since we standardize
the variable.

Proposition 2.3. If X and Y are random variables with compact support, and there
exists measurable f such that Y = f(X), then CX→Y ≥ CY→X , in the limit of infinite
data.

Proof. If there is no noise, then Lemma B.1 suggests thatCX→Y → 1, which concludes
the assertion in the limit.

Lemma B.1. Let X be a random variable with support on a compact and connected
set C ⊂ R and let f : R→ R be a continuously differentiable function over C. Let xi
be independent samples of X for i = 1, . . . , N . Then

1

N − 1

N−1∑

i=1

(
f(xi+1)− f(xi)

)2
→ 0 as N →∞, (24)

where xi+1 ≥ xi for all i.

Proof. For notation, we use x(1) ≤ x(2) ≤ . . . ≤ x(N) for the sorted sample. We
denote

KN =
1

N − 1

N−1∑

i=1

(
f(x(i+1))− f(x(i))

)2
.

Since f is continuously differentiable, there exists M := supx∈C f
′(x), and by com-

pactness there exists a, b ∈ R, a ≤ b, such that C = [a, b]. Then the bound, for any
N ≥ 2

SN :=M2

(
(x(1) − a)2 + (b− x(N))

2 +
N−1∑

i=1

(
x(i+1) − x(i)

)2
)
≥ KN . (25)

Hence it suffices to show that for any ε > 0 there exists N0, such that for all N > N0,
we have SN < ε. Naturally SN is downwards bounded by 0, thus we may show that SN
is a strictly descending sequence. See that for any fixed N we have that xN+1 ∈ [a, b],
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either xN+1 ∈ [a, x(1)), xN+1 ∈ [x(N), b] or there exists some j = 1, . . . , N − 1 such
that xN+1 ∈ [x(j), x(j+1)). For the last case it holds that

(x(j+1) − x(j))2 ≥ (x(j+1) − xN+1)
2 + (xN+1 − x(j))2,

and the cases a ≤ xN+1 < x(1) and x(N) ≤ xN+1 ≤ b follows analogously. This
shows that SN > SN+1. Now scale SN with 1

N−1 and observe that (25) still holds,
hence 0 ≤ KN ≤ SN

N−1 ≤ S2

N−1 → 0, and the assertion follows.
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